

Available online at www.sciencedirect.com

Physica B 403 (2008) 869-870

PHYSICA B

www.elsevier.com/locate/physb

Magnetic ordering in PrFe₄As₁₂

T.A. Sayles^{a,*}, W.M. Yuhasz^a, J. Paglione^a, T. Yanagisawa^a, J.R. Jeffries^a, M.B. Maple^a, Z. Henkie^b, A. Pietraszko^b, T. Cichorek^b, R. Wawryk^b, Y. Nemoto^c, T. Goto^c

^aDepartment of Physics and Institute for Pure and Applied Physical Sciences, University of California at San Diego, La Jolla, CA 92093, USA

^bInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wroclaw, Poland

^cGraduate School of Science and Technology, Niigata Univesity, Niigata 950-2181, Japan

Abstract

Magnetization M(H,T), specific heat C(T), and electrical resistivity $\rho(T)$, measurements were performed on single crystals of the Prbased filled skutterudite compound PrFe₄As₁₂. M(H) isotherms indicate a saturation magnetization of $2.3\mu_{\rm B}/f.u.$, and Arrott analysis reveals a Curie temperature $T_{\rm C} = 18.2$ K and saturated moment $M_{\rm sat} = 2.0\mu_{\rm B}/f.u.$ Curie–Weiss analysis of magnetic susceptibility, χ , reveals two distinct regions: for T > 100 K, the effective moment $\mu_{\rm eff} = 3.98\mu_{\rm B}$ and the Curie–Weiss temperature $\theta_{\rm CW} = 4.1$ K, while for 19.5 < T < 75 K, $\mu_{\rm eff} = 3.52\mu_{\rm B}$ and $\theta_{\rm CW} = 17.7$ K. C(T) and $\rho(T)$ show distinct features at $T_{\rm C}$, while the ac susceptibility exhibits lower temperature features, possibly associated with changes in magnetic structure. © 2007 Elsevier B.V. All rights reserved.

- 0

Keywords: Ferromagnetism; Skutterudites; Praseodymium

The interplay between crystalline electric field effects and strong hybridization of the Pr-4f localized state with conduction electron states leads to a variety of strongly correlated electron phenomena in the Pr-based filled skutterudite compounds, including: unconventional super-conductivity, heavy fermion behavior, and antiferroquadrupolar order in PrOs₄Sb₁₂ [1–3] and multiple ordered phases, one of which is antiferromagnetic, in PrOs₄As₁₂ [4,5]. Presented here are thermodynamic and transport measurements on single crystals of the Pr-based filled skutterudite arsenide PrFe₄As₁₂.

Fig. 1 shows M(H) isotherms for fields oriented along the [1 1 1] and [1 0 0] directions at 2 K. A change of the easy axis from the [1 0 0] to the [1 1 1] directions at $H \sim 0.6$ T can be seen as a change of the maxima in M along the two directions. Additional measurements of M(H) at higher temperatures, T > 10 K, show no change in the easy-axis with field. Arrott plot analysis of M(H) isotherms yields a Curie temperature $T_{\rm C} = 18.2$ K.

The lower panel in Fig. 2 shows ZFC and FC dc magnetization, M(T), of PrFe₄As₁₂ for an applied field of 5 mT as well as the imaginary part of ac susceptibility, $\chi''_{ac}(T)$, for three driving frequencies: 10, 100, and 500 Hz, respectively, with an ac field of $H_{\rm ac} = 0.1 \,\mathrm{mT}$. High temperature, $70 \le T \le 300$ K, Curie–Weiss fits of $\chi_{dc}^{-1}(T)$ (not shown) reveal a Curie–Weiss temperature, $\theta_{CW} =$ 4.1 K, and an effective moment $\mu_{eff} = 3.98 \,\mu_{B}$, whereas low temperature fits indicate $\theta_{CW} = 17.7$ K, consistent with the Curie temperature derived from the Arrott analysis, and $\mu_{\rm eff} = 3.52 \mu_{\rm B}$. The measured saturation magnetization is larger than that expected for Pr^{3+} based on Hund's rules. However, the excess can be attributed to the spin-only moment of Fe for the low-spin configuration. The midpoint of the broadened step in $\chi''_{ac}(T)$ shown in Fig. 2 is found to be $T_{\rm C} = 17.8$ K. The frequency dependence of $\chi''_{ac}(T)$ shown in Fig. 2 is possibly due to spin fluctuations related to the change in the magnetic easy-axis displayed in the 2 K M(H) isotherm seen in Fig. 1. Two other distinct features are also evident in $\chi''_{ac}(T)$: at 11.7 K, there is a maximum indicative of a possible second-phase transition, while at 7.5 K there is a large peak with some frequency

^{*}Corresponding author. Tel.: +18585342493; fax: +18585341241. *E-mail address:* tsayles@physics.ucsd.edu (T.A. Sayles).

^{0921-4526/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2007.10.268

Fig. 1. M(H) oriented along the [1 1 1] and [1 0 0], directions at 2 and 15 K, with the inset showing a close up of the low field data.

Fig. 2. Zero-field C_{e+m}/T , $d\rho/dT$, (top panel) M_{dc} , and χ''_{ac} (bottom panel) as a function of temperature, T.

dependence, which seems to be related to the change in easy-axis observed in the M(H) isotherms.

The upper panel in Fig. 2 shows the magnetic and electronic contributions, $C_{e+m}(T)/T$, of C(T)/T after the lattice and a low-temperature nuclear portion were removed. The lattice contribution was estimated from a Debye analysis, $C/T = \gamma + \beta T^2$ (where γ is the electronic specific heat coefficient, found to be 340 mJ/mol K², and β determines the lattice contribution, as well as the Debye temperature, $\theta_{\rm D}$, which is calculated to be 356 K), while the nuclear portion was analyzed using a high-temperature expansion of a Schottky anomaly— $C_{\text{Schottky}} \sim A/T^2$. Also plotted in the upper panel in Fig. 2 is $d\rho(T)/dT$. In both plots, a clear step is seen with the midpoint near 18K indicating the onset of magnetic ordering. Additionally, a broad, Schottky like, maximum is seen in both data sets near 10.5 K. Interestingly, both plots have remarkable similarities, a possible reason being, the resistivity is dominated by magnetic scattering for temperatures below $T_{\rm C}$.

 $PrFe_4As_{12}$ has a clear transition to a ferromagnetic state at $T_C = 18$ K, followed by a possible structural change at 11.7 K, and finally a change in the easy-axis at T = 7.5 K. Whether the structural change drives the change in easy axis remains to be determined.

This work was supported by the US Department of Energy under grant no. DE-FG02-04ER46105 and the US National Science Foundation under grant no. DMR 0335173.

References

- [1] M.B. Maple, et al., Acta Phys. Pol. B 32 (2001) 3291.
- [2] E.D. Bauer, et al., Phys. Rev. B 65 (2002) 100506(R).
- [3] M.B. Maple, et al., J. Phys. Soc. Jpn. Suppl. 71 (2002) 23.
- [4] W.M. Yuhasz, et al., Phys. Rev. B 73 (2006) 144409.
- [5] M.B. Maple, et al., Proc. Natl. Acad. Sci. 103 (2006) 6783.