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Quantum oscillations from networked topological interfaces in
a Weyl semimetal
I-Lin Liu 1,2,3✉, Colin Heikes 1,4, Taner Yildirim1, Chris Eckberg2, Tristin Metz2, Hyunsoo Kim 2, Sheng Ran1,2,3,5,
William D. Ratcliff 1, Johnpierre Paglione 2 and Nicholas P. Butch 1,2✉

Layered transition metal chalcogenides are promising hosts of electronic Weyl nodes and topological superconductivity. MoTe2 is a
striking example that harbors both noncentrosymmetric Td and centrosymmetric T’ phases, both of which have been identified as
topologically nontrivial. Applied pressure tunes the structural transition separating these phases to zero temperature, stabilizing a
mixed Td–T’ matrix that entails a network of interfaces between the two nontrivial topological phases. Here, we show that this
critical pressure range is characterized by distinct coherent quantum oscillations, indicating that the difference in topology
between topologically nonvtrivial Td and T’ phases gives rise to an emergent electronic structure: a network of topological
interfaces. A rare combination of topologically nontrivial electronic structures and locked-in transformation barriers leads to this
counterintuitive situation, wherein quantum oscillations can be observed in a structurally inhomogeneous material. These results
further open the possibility of stabilizing multiple topological phases coexisting with superconductivity.
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INTRODUCTION
Topologically protected electronic states at material interfaces are
attractive because they cannot be destroyed by many types of
perturbations1,2. An especially fruitful host of such exotic states is
MoTe2, which has had both its bulk orthorhombic Td phase, and
hole-doped monolayer specimens identified as possible topologi-
cal superconductors3–5. In addition, a topological superconducting
phase was recently discovered in sulfur-substituted samples, with
S+−-wave pairing6. MoTe2 also features topologically nontrivial
normal states: the Td phase has been identified as a type II Weyl
semimetal7–10, whereas the monoclinic T’ phase is predicted to be
a higher-order topological material11; the latter is also found to
describe the Td phase in some calculations11. In this work, we
demonstrate via quantum oscillations and neutron scattering
measurements, and first-principles calculations, how pressure
drives MoTe2 between the Td and T’ phases, through an
intermediate mixed-phase region. The mixed-phase region gives
rise to a network of topological interface states that yield quantum
oscillations that survive despite the strong structural disorder.

RESULTS
Orthorhombic Td–MoTe2
The first-order structural transition separating the T’ and Td phases
in MoTe2 has a distinct pressure dependence (Fig. 1a). At ambient
pressure, the inversion-symmetric T’ phase is stable at room
temperature, only transforming into the noncentrosymmetric Td
phase when cooled below roughly 250 K3,12. Neutron diffraction
allows the determination of the relative volume fraction of these
phases under different conditions12. As pressure increases, the
transition temperature decreases. At pressures higher than
0.8 GPa, a completely different phenomenon emerges, where a
roughly balanced mixture of the T’ and Td phases stabilizes over
an appreciable temperature range, and crucially, extends to the

lowest measured temperatures. The existence of this frozen
mixed-phase region is stabilized by the lack of sufficient entropy
at these suppressed temperatures for atoms to move to their
lowest-energy configuration, implying that there is a dominant
extrinsic transformation energy barrier between two energetically
nearly degenerate structures12.
The basic components underlying the Weyl semimetallic state

of the low-pressure, low-temperature Td phase are a large hole
pocket centered on the Brillouin zone and two neighboring
electron pockets along the Γ –X direction8–10,13. The hole pocket is
observed in angle-resolved photoemission spectroscopy (ARPES)8–10,
but is not apparent in SdH measurements14. Prominent quantum
oscillations observed in the Td phase arise from orbits associated with
the electron pocket14. Figure 2a, b shows magnetoresistance and
SdH oscillations at ambient pressure, in which these are clearly seen.
As the fast Fourier transform (FFT) explicitly shows (Fig. 2c), the
beating seen in Fig. 2b is due to two similar frequencies, Fα= 240.5 T
and Fβ= 258 T, the result of symmetry-allowed spin–dorbit splitting.
First-principles calculations identify these frequencies with the larger
extremal kz= 0 cross sections of the electron pocket.
Modeling of the SdH oscillations yields a remarkably good fit

(Fig. 2d) to the experimental SdH by the Bumps program15

(Supplementary Figs. 15–23, Supplementary Table 5, Supplemen-
tary Notes 9 and 10). Notably, all of the oscillations feature a π
Berry’s phase16, consistent with a Weyl topology (Supplementary
Figs. 3–7, 14, and Supplementary Note 2). The effective band
masses are light and slightly less than previously reported14,17, as
shown in Fig. 2e. As a function of pressure, the electron pockets
increase modestly in size due to lattice compression, but the
nontrivial phase shift is maintained throughout the Td phase
(Supplementary Tables 1–4). This trend is consistent with first-
principles calculations as shown in Fig. 3a and b, which indicates
the persistence of Weyl nodes up to 1.4 GPa (Supplementary Fig. 6
and Supplementary Note 2).
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Monoclinic T’– MoTe2
In the T’ phase at pressures of 1.2 GPa and greater, one main
frequency Fη replaces the two frequencies Fα and Fβ. The Fermi
surface in the T’ phase closely resembles that of the Td phase,
with the exception that the centrosymmetry of the T’ phase
nullifies the spin–orbit splitting of the bands that contribute to
this electron pocket (Fig. 3d, e). This similarity leads to a common
pressure dependence of the measured electron pocket frequency
in both phases, consistent with the pressure evolution of the
calculated Fermi surface (Fig. 3c, Supplementary Fig. 8, and
Supplementary Tables 1–4). The main feature not captured by the
calculations is a pronounced discontinuity in band structure
between Td and T’ phases due to the discontinuous c axis dilation
at the structural transition, which is not modeled (Fig. 3c).
Unexpectedly, our SdH oscillations analysis shows that a π Berry’s
phase also exists in the centrosymmetric T’ phase (Supplementary
Table S6). After an ARPES study identified surface states in this
phase13, it was identified theoretically with an unusual type of
nontrivial topological state11. Our results are consistent with this
prediction, and further have the exciting implication that the
high-pressure superconductivity in the T’ phase may be
inherently topologically nontrivial, as suggested by μSR measure-
ments at these pressures18.

Natural topological interface network (TIN)
A structural mixed region exists over a range of pressures and
temperatures in between the bulk Td and T’ phases (Fig. 1a). It
consists of an approximately balanced partial volume fraction of
Td and T’. We emphasize that no other structural phases or
ordered superstructures are apparent from neutron diffraction
measurements (Supplementary Figs. 1 and 2). It would, therefore,
be expected that any measured SdH oscillations in the mixed
region would consist of a superposition of Td and T’ signals, but
we do not observe oscillations from either phase. We conclude
that the mixed region is sufficiently disordered that SdH
oscillations from both the Td and T’ phases are suppressed due
to increased electron scattering.
In light of this, it is completely unexpected that a distinct set of

SdH oscillations appears (Fig. 1b, d). This is a robust effect; the
oscillations in the mixed phase always appear on both increasing
and decreasing applied pressures through the critical range, over
multiple cycles, confirming their intrinsic nature. A different band
structure in the mixed region is inferred from the presence of
frequencies corresponding to changed Fermi surfaces, and a
change in effective mass and much weaker oscillation amplitude
relative to bulk Td and T’, as shown in Fig. 4a–f. These quantum
oscillations reflect features typical of topologically protected
states, namely, persistence in the presence of strong disorder, as

Fig. 1 Pressure–temperature phase diagram of MoTe2. a Pressure–temperature phase diagram of MoTe2. The green and blue symbols
delineate the extent of 100% volume fraction of T' and Td phases, respectively, determined through neutron scattering. The onset of full
volume superconductivity coincides with the end of the Td phase at 0.8 GPa 12, where a topological interface network (TIN) is observed.
b Pressure dependence of the quantum oscillation frequency, with different branches labeled by Greek letters. The numbers correspond to
the effective mass, which changes slightly with pressure. The quantum oscillations with the strongest pressure dependence, α and β in the Td
phase, and η in the T' phase, correspond to extremal orbits on the large electron pockets. In the TIN region, these disappear and are replaced
by a completely distinct set of oscillations arising from topological interface states. Representative quantum oscillations (c) at ambient
pressure (Weyl semimetal in Td), d 0.9 GPa (TIN), and e 1.8 GPa (higher-order topology in T'). Clear changes in the quantum oscillations reflect
significant changes in the electronic structure.
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well as π Berry’s phases (Supplementary Tables 5 and 6). Because
there are no additional structural phases in the mixed region, only
Td and T’, these topological states must be surface states of the
bulk phases, which in this case, exist at their interfaces. Thus, the
multiple natural interfaces stabilized in MoTe2 by the first-order
nature of the structural transition serve as the foundation for a
completely different type of electronic system in MoTe2: a natural
topological interface network (TIN).
In the TIN, due to the layered structure of both Td and T’

phases, the ab plane is preserved, and the largest grain
boundaries fall along the ab plane, which is the orientation
probed by the SdH measurements (Fig. 4g). In MoTe2, a naturally
generated heterostructure provides an interesting demonstra-
tion of topological transport protection. The lateral dimensions
of the interfaces are the same as those of the bulk grains, based
upon which one naively expects similar damping of the SdH
oscillations from the interfaces. The absence of quantum
oscillations from bulk Td and T’ phases illustrates that the
scattering from the TIN microstructure is significant for the bulk
bands. Yet the clear SdH oscillations from the interfaces prove
that the interfacial states have lower scattering than the bulk,
and are a sign of their topologically nontrivial nature. In other
words, the interfacial signal has been amplified by suppressing

the bulk SdH oscillations through grain boundary scattering, and
increasing the interface volume.

Density-functional theory (DFT) calculation of Td–T’ slab model
First-principles calculations offer additional insight into the
electronic structure of the TIN and its stability. We investigated a
variety of possible mixed phases that might describe the mixed
region, including Td-like phases with different MoTe2 stacking
orders, periodic superstructures, and finite slabs of Td and T’
phases and their interfaces as shown in Fig. 5a and b (detailed
calculations are discussed in the Supplementary Figs. 9–13 and
Supplementary Notes 4–6). Calculations demonstrate that the only
model consistent with the experimentally determined high-
frequency oscillations of ~1 kT (Fig. 4d) is a system consisting of
only Td–T’ interfaces, the TIN (Fig. 5d).
The Fermi-surface pockets associated with the interface are

identified in two different but complementary calculations.
Consider a periodic superstructure of Td and T’ phases, as shown
in Fig. 5a. Surprisingly, the Td–T’ interface has lower energy if the
MoTe2 layers at the interface have the same type of Te distortion,
labeled as L or R, compared to the L–R–L–R-type stacking order
found in bulk Td and T’ phases. Since L- or R-type planes cannot be

Fig. 2 Quantum oscillations in the magnetoresistance in MoTe2 at ambient pressure. a The longitudinal MR of the bulk Td-MoTe2 measured
at ambient pressure with a magnetic field parallel to the c axis. b The corresponding SdH oscillations after subtraction of a second-order
polynomial background. c The fast Fourier transform (FFT) spectra show three Fermi surfaces with oscillation frequencies at Fγ= 32.5 T, Fα=
240.5 T, and Fβ = 258 T. The inset shows the α and β orbits on the calculated electron pocket. d Fit to the SdH oscillation at 1.8 K yield nontrivial
Berry’s phases ϕγ= π, ϕα= 0.88π, and ϕβ= 0.88π. Details of the fit are discussed in the Supplementary Information. e The effective masses of
the carriers are obtained through temperature-dependent Lifshitz–Kosevich fits.
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converted to each other by simply sliding the planes, this sort of
interface presents a large energy barrier to the removal of stacking
faults. The fact that this LL-type interface has lower energy than
the interface with L–R stacking explains the stability of the mixed
intermediate phase. Comparing the Fermi surfaces of the pure Td
and T’ phases with the Td–T’ superstructure yields distinct Fermi-
surface pockets with quantum oscillation orbits of 0.16 kT and
1.0 kT (bottom panel of Fig. 5d) in excellent agreement with our
measurements.
Even though the periodic superstructure calculations of the

Td–T’ interface are consistent with the TIN model, the interface
pockets have some dispersion due to interactions between the
periodic images of the interface. To eliminate this effect, consider
two slabs of Td and T’ initially separated by about 9.5Å (Fig.5b).
These two slabs are brought together to form the Td–T’ interface
in a supercell where the combined Td–T’ slab is separated by
~16.3Å, large enough to avoid any image interactions (Fig. 5b,
bottom). Comparing the Fermi surfaces of the isolated slabs
(Fig. 5b) and combined slabs with the interface (shown in Fig. 5c),
yields Fermi-surface pockets associated with the interface
(Fig. 5d, top).
The agreement is excellent between the surface states from the

periodic and finite slab calculations. These 2D quantum oscillation
orbits are in impressive agreement with the experimental results
(middle panel of Fig. 5d). Thus, the slab calculations directly link
the observed high-frequency oscillation in the mixed region to
interface states, as a TIN would produce.

DISCUSSION
Essential to any topological surface state is the meeting of two
bulk phases with different topological invariants. A typical
example is that of a Weyl semimetal interfaced with a
topologically trivial vacuum, on whose boundary Fermi arcs are
observed, as in Td–MoTe2

8. In contrast, the second phase of the
TIN is the topologically nontrivial T’ phase, which forms a large
number of Td/T’ interfaces due to the structural disorder. Then, for
surface states to exist at these interfaces, there must be a change
in topology between Td and T’ phase, as expected for phases of
Weyl and higher-order topological states. Although such inter-
faces have until now not received much theoretical attention,
recent scanning tunneling microscopy measurements on MoTe2
have suggested the existence of conducting hinge states in the T’/
Td domain wall at ambient pressure19. Our results did not directly
observe 1D-hinge state, but cannot completely exclude the
possibility of 1D paths. Our measurements and calculations show
that 2D topological interfaces are also possible. Our discovery
suggests that topological interfaces in 3D materials are a rich area
for future exploration and exploitation.
Finally, we briefly discuss the relationship between the TIN and

superconductivity in MoTe2. Both the superconducting volume
fraction and Tc increase dramatically at the same pressure at which
the TIN is stabilized (Fig. 1a). Taking into further consideration the
2D nature of superconductivity, based on our previous calcula-
tions12 and recent upper critical field measurements under
pressure20, a strong case is made that superconductivity is
topologically nontrivial, consistent with previous claims from

Fig. 3 Comparison between the calculated and experimental quantum oscillation frequencies for Td and T’ phases. a, b Calculated in-
plane quantum oscillation frequencies for the Td and T' phases. The SdH oscillation frequencies arising from the electron pockets increase
with the same pressure dependence in both phases. c A comparison between calculated and measured frequencies shows excellent
quantitative agreement. The discontinuity in measured values is due to the jump in c axis dilation between phases. d, e Calculated bulk Fermi
surfaces of the Td and T' phases.
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μSR measurements18. The combination of pressure-sensitive
structure and topology in MoTe2 makes this an exciting play-
ground for the use of topological interfaces, with potential
applications in a variety of quantum devices.

METHODS
First-principles calculations
The total energy, structure optimization under pressure, and band
structure and Fermi-surface calculations were performed by Quantum
Espresso21, which is based on DFT, using a plane-wave basis set and fully
relativistic all-electron projected augmented wave (PAW) potentials22. The
4s, 4p, 4d, and 5s electrons of Mo and the 4d, 5s, and 5p electrons of Te
were treated as valence. We used 0.02 Ry Methfessel–Paxton smearing
with wavefunction and charge density cut-off energies of 100 Ry and
800 Ry, respectively. The exchange-correlation interactions were described
by the generalized gradient approximation (GGA) with the
Perdew–Burke–Ernzerhof exchange-correlation functional23. The Brillouin-
zone integration was performed using Monkhorst-Pack grids of special
points with 16 × 8 × 4 for total energy and structure optimizations and
32 × 16 × 8 with tetrahedra method for electronic density of states and
Fermi-surface calculations. The spin–orbit (SO) interactions and the weak
inter-layer van der Waals (vdW) interactions were all included in our
calculations. We used grimme-d224 vdW correction with parameter london
—s6= 0.6. The effect of electron correlations is included within DFT+U
method with U= 3.0 eV for the Mo 4d-states. Including electron correlation
brings the calculated band structure and Fermi surface into an excellent
agreement with quantum oscillation and ARPES measurements, as
discussed in Supplementary Information and also found in other very
recent studies25,26. Fermi-surface sheets and SdH orbits are visualized by
our custom python code using Mayavi27. The quantum oscillation
frequencies/orbits and their angle dependence were calculated using
the skeaf code28.

Crystal synthesis
Large single crystals were grown using the Te self flux method described
elsewhere12 using high purity Mo powder (5N metals basis excluding
W, Alpha Aesar), and Te shot (6N, Alpha Aesar). High sample quality has
been confirmed by X-ray and neutron diffraction, stoichiometry has been
confirmed by wavelength dispersive spectroscopy, and the samples
measured have residual resistivity ratios >1000.

Structural measurements
Determinations of the temperature and pressure-dependent crystal
structure were made using elastic neutron scattering measurements at
14.7 meV on the BT-4 triple-axis spectrometer at the NIST Center for
Neutron Research using a collimation and filter setup of open-pg-40’-pg-s-
pg-40’-120’, where pg refers to pyrolytic graphite. Single crystals were
mounted in a steel measurement cell aligned in the H0LM zone, and He
was supplied as a pressure medium to maintain hydrostatic pressure
conditions as described elsewhere12. The Td and T’ phases and their
volume fractions were identified from the position and intensity of (201)M
reflections, which both split in 2θ and shift in ω in the T’ phase. Rocking
curves and ω–2θ scans were taken at each pressure and temperature.
Scans along (00L) from (2 0 0.5) to (2 0 4.5) were also obtained at 0.8 GPa in
all Td or T’ condition, as well as in the mixed region at both 0.8 and 1 GPa
to look for possible superstructure reflections. None were observed.

Transport measurements
A nonmagnetic piston-cylinder pressure cell was used for transport
measurements under pressure up to 1.8 GPa, using a 1:1 ratio of n-Pentane
to 1-methyl-3-butanol as the pressure medium and superconducting
temperature of lead as pressure gauge at base temperature.
All transport measurements were performed on the same MoTe2 crystal

with 110-μm thickness using four-point contacts made with silver epoxy.
The pressure dependence of the superconducting transition and structural

Fig. 4 Quantum oscillations in the magnetoresistance in MoTe2 under pressure. Temperature dependence of the SdH oscillations of MoTe2
measured at (a) 0.6 GPa in the Td phase, (c) 0.9 GPa in the topological interface network (TIN), and (e) 1.8 GPa in the T' phase. Note the large
changes in oscillation amplitude at different pressures. Corresponding fast Fourier transform (FFT) spectra of (b) Td, (d) TIN, and (f) T'
emphasize the dramatic changes in quantum oscillation frequency, due to changes in the dominant electronic orbits, as pressure tunes
through the different phases. g Schematic of the topological interface network (TIN) showing the 3D mixed Td–T' microstructure. The
relatively weak but coherent signals are robust against pressure-induced disorder and only come from the connected interfaces between
grains of Td and T'. This TIN heterostructure can parametrically increase the number of surface channels and is a promising approach to
increasing the surface-to-volume ratio of mixed-phase topological materials. The SdH signal is only related to cyclotron motion in the ab
plane since electric current (I) and magnetic field (B) are along a and c crystallographic axis.
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transition12 were determined in a Quantum Design PPMS and dilution
refrigerator in the first pressure run (1 atm to 1.8 Gpa and back to 1 atm).
The SdH oscillations were measured in a PPMS and dilution refrigerator
(only 0.6 Gpa) in the second pressure run (1 atm to 1.8 Gpa and back to 1
atm) and in an Oxford Instruments Heliox at 0.3 K and 6–18 T in a third
pressure run (pressure range below 1.8 Gpa). The identification of
commercial equipment does not imply endorsement by NIST.

DATA AVAILABILITY
Data are available from the authors upon reasonable request.
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A. Supplementary Note 1: Elastic neutron scattering

The stated relationship between quantum oscillations and crystal structure is based on our pressure and temperature dependent
elastic neutron scattering measurements. As described in our previous work1, we determine the Td and T’ phase fractions from
the scattering intensity at the (201) reflections of the monoclinic unit cell for the T’ phase. For the Td phase, this is for a unit
cell with a β-angle of 900. The scattered intensity is determined from the integrated intensity of transverse scans centered at the
nominal peak positions for each phase. We used the BT-4 triple-axis spectrometer at the NIST Center for Neutron Research with
a monochromatic 14.7 meV neutron beam and a collimation and filter geometry of Open-pg-40’-pg-s-pg-40’-120 where pg refers
to an oriented pyrolytic graphite filter used to remove higher order neutrons. The temperature dependent integrated intensity of
each phase, taken upon warming, is given in Fig. 1(a)-(c) at 0.3 GPa, 0.8 GPa, and 1 GPa respectively. Figs. 1(d)-(f) show the
raw scattering data fit to a Gaussian peak shape used to extract the integrated intensity for the three different temperature regimes
seen at 0.8 GPa. In the mixed region, the temperature dependent isobars show a clear deviation from normal mean field-like
behavior expected for a first order phase transition. We attribute this to kinetic trapping of the structural phase transition.

Critical to our discussion of phase coexistence and our interpretation of the cause of the arrested transition is that despite an
apparent suppression of a phase transition temperature to zero temperature at a specific pressure, we do not believe this should
be described as a quantum structural phase transition. We attribute the effective "freezing" of the transition to the reduction of
the structural transition temperature into a temperature regime where thermal fluctuations cannot overcome the energy barrier
between the phases. We can draw an analogy between this behavior and the kinetic freezing observed in the low temperature
first order magnetic transitions in (La,Pr,Ca)MnO3 between a ferromagnetic and charge-ordered antiferromagnetic state2. In
the magnetic case the complex energy landscape is attributed to competition between magnetic order, structural and chemical
disorder, and inter-grain strain, which is consistent with other observations of similar transistions in magnetocaloric materials
with magnetostrictive coupling3. Given the previously established sensitivity of the MoTe2 structural phase transition to pressure
and strain as well as the known structural disorder in van der Waals materials, it is reasonable to assume that inter-grain strain
and disorder may dominate the phase transition kinetics in this system as well1,4. At 0.8 GPa where we first observe a broad
mixed region, the transition temperature is still high enough that it is possible to undercool the sample such that it eventually
completes the phase transition, but at 1 GPa the transition temperature is further suppressed and no sufficient undercooling is
possible leading to the mixed region as the ground state structure.

Given the coherent oscillations in the mixed region, we considered whether this could be evidence of a new bulk structural
phase driven by stacking disorder during the phase transition. If this were the case, we would expect to observe new reflections
along the stacking direction. We performed [00L] scans along [20L] at 0.8 GPa at temperatures corresponding to the Td phase
and the mixed region. These are shown in figure 1. Clearly we see no evidence of new reflections that would indicate a new
phase, instead observing only integer L peaks for the Td phase, split integer peaks from both monoclinic twins in the T’ phase,
and scattering attributable to the mixed phase in the mixed region. While we cannot completely rule out a new intermediate
meta-stable phase, we see no indication of this either from superlattice reflections along [00L] or from missing intensity in the
mixed region. The same is seen at 1.5 K and 1 GPa, with a slightly different ratio of Td to T’ phase, consistent with the volume
fractions extracted from the (201) scans used for the phase diagram in figure 2.
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Supplementary Figure 1: Temperature evolution of T’ and Td phase fractions. a-c shows the temperature dependent phase
fractions of both the T’ and Td phases at three different pressures illustrating the mixed region above 0.6 GPa. d-f show the

background subtracted scattering intensities at the (201) peak positions in the pure Td phase, the mixed region, and in the pure
T’ phase used to extract the phase fractions for the 0.8 GPa data in panel (b). The red lines show the Gaussian fits to the data
used to extract the integrated peak intensities for phase fraction determination. Error bars correspond to an uncertainty of one

standard deviation.
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Supplementary Figure 2: Scans along (20L) taken at 0.8 GPa showing scattering along L in the Td phase and in the mixed
region. In the mixed region, we see no new scattering that would be indicative of stacking order along the c-axis, observing

only clear reflections from both the Td and T’ phases.
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B. Supplementary Method: First-Principles Calculations

In this section, we discuss the details of our first-principles electronic structure calculations of MoTe2 as a function of pressure
for both 1T’- and Td-phases, respectively. The total energy, structure optimization under pressure, and band structure and Fermi
surface calculations were performed using Quantum Espresso,5, which is based on density-functional theory (DFT), using a
plane wave basis set and fully relativistic all-electron projected augmented wave (PAW) potentials6,7. The 4s, 4p, 4d, and 5s
electrons of Mo and the 4d, 5s, and 5p electrons of Te were treated as valence electrons. We used 0.02 Ry Methfessel-Paxton
smearing, with wavefunction and charge density cut-off energies of 100 Ry and 800 Ry, respectively. The exchange-correlation
interactions were described by the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof exchange-
correlation functional8. The Brillouin-zone integration were performed using Monkhorst-Pack grids of special points with
dimensions of 16× 8× 4 for total energy and structure optimizations and 32× 16× 8 for electronic density of states and Fermi
surface calculations using the tetrahedron method. The spin-orbit (SO) interactions and the weak inter-layer van der Waals
(vdW) interactions were all included in our calculations. We used the grimme-d29 vdW correction with parameter london - s6 =
0.6. The effects of electron correlations are included within the DFT+U method with U =3.0 eV for the Mo 4d-states. Including
electron-correlation brings the calculated band structure and Fermi-surface into excellent agreement with Quantum Oscillation
and ARPES measurements as found in very recent studies10,11. Fermi-surface sheets and SdH orbits are visualized by our custom
python code using Mayavi13. The quantum oscillation frequencies/orbits and their angle dependence were calculated using the
skeaf code14.

C. Supplementary Note 2: Effect of Electron Correlations on the Band Structure and Fermi Surface of MoTe2

Recent studies10,11 found that electron correlations are essential for a precise description of the bulk electronic structure of
Td-MoTe2 as reFealed by angular resolved photoemission spectroscopy (ARPES)10 and the angular dependence of the Fermi
surface by quantum oscillation (QO) experiments11. Hence, in our study we adopted DFT+U scheme to describe the electron
correlations within the Mo 4d-states. The overall best agreement with ARPES and QO data is obtained for U =3 eV10,11, which
was also used in our calculations in this study.

Figures 3 and 4 show the effect of the Hubbard U (taken as 3.0 eV) on the band structure and the Weyl-points in the Td- and
1T’-phases of MoTe2, respectively. A detailed study of the effect of Hubbard U on the Weyl point (WP) in MoTe2 can be found
in Ref11. Briefly, in total there are four pairs of WPs, each in one quadrant, all of which are located on the kz = 0 plane and are
related by the crystal symmetry. In our fully self-consistent calculations where both the lattice parameters and atomic positions
were obtained self consistently from structure optimization, we usually get two Weyl points at (±kx, ±ky,0) with very small
ky.

We note that the biggest effect of including U is to shift the bands near the Y -point so that there is no longer a small electron
pocket at the Fermi surface as shown in Fig. 5. The other main effect is to lower some of the bands further below the Fermi level
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X YΓ

Supplementary Figure 3: Band structure of Td-phase of bulk MoTe2. Electronic band structure without (left) and with
Hubbard U (right), showing the effect of the electron correlations on the band structure. The main effect is to shift up the bands
near Fermi level around the Y-point while the Weyl point (shown as "w") is not effected by U . The small splitting of the bands

is due to Spin-Orbit (SO) coupling and the lack of inversion symmetry in the Td phase.
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Supplementary Figure 4: Band structure of 1T’-phase of bulk MoTe2. Band structure with (right) and without U term (left)
in 1T’-phase of bulk MoTe2. The effect of SO coupling is still important even though it does not split the bands (but shifts them

around to affect the Fermi Surface).

which does not have any effect on the Fermi surface. It is important to note that the Weyl point near the Fermi level remains
unaffected by the inclusion of the Hubbard correlation term U in our calculations. However, as we shall see below, including U
is critical to explain the pressure dependence of the QO frequencies that we have measured in this study.

Finally, Figure 6 shows the effect of pressure on the Weyl point. The main effect of pressure is to shift up the hole pocket
while shifting down the electron pocket near the Fermi level such that the Weyl point roughly does not change with initial applied
pressure, at least up to 14 kbar. At higher pressure, it seems that the Weyl point moves slightly above the Fermi level (Fig. 6). A
HOTI in the Td phase requires the annihilation of the Weyl nodes12, therefore, we would not expect HOTI in Td in our system
here.

In our calculations, besides the Hubbard term U , there are other parameters such as lattice constants and atomic positions
that we need to determine. Calculations can be based on the experimental parameters or the parameters can be determined self
consistently within the DFT+U structural optimization at any given pressure. Figure 5 shows the Fermi surface of Td- and 1T’
phases of MoTe2 for both experimental and DFT optimized structures with and without electron correlation effects (i.e. U ). We
note that the Fermi surface is very sensitive to the lattice parameters and the atomic positions. Our optimized lattice parameters
and atomic positions are within 1% of the experimental values as shown in Tables 1 and 2. The biggest variation is in the a-axis
for the Td phase and it is 1.4%. Despite this excellent agreement between experiment and calculations, the difference in the
Fermi surface between experimental and the optimized structures is quite large. In order to be self-consistent, we decided to
use optimized lattice parameters and atomic positions for a given pressure as obtained from our DFT+U calculations. In this
way, we are able to determine the pressure dependence of the Fermi Surface and determine the quantum oscillation orbits and
frequencies. The only free-parameter in our DFT+U calculations is the Hubbard U , which was shown to be around U =3 eV for
MoTe2 to match the ARPES measurements as well as the angle dependence of the QO frequencies10,11.

D. Supplementary Note 3: Pressure Dependence of the Fermi Surface and Quantum Oscillations

In this section, we present our results related to the pressure dependence of the Fermi surface and quantum oscillation orbits
as a function of applied pressure for both phases of MoTe2. In both phases, we calculate similar Fermi surfaces and orbits which
are summarized in Figure 7. Near zone center Γ, we have a square-box hole-like Fermi surface (red). The orbit around this
Fermi surface is shown in Fig.7 as "s". Then, we have an electron-like Fermi surface with a shape of a coffee mug (light blue).
This shape has basically three types of extremal orbits as shown in the Figure 7. We label the orbits at the opening as "op". Then,
the orbit near the handle like surface as "h". And, finally we have the orbits near the cup like surface denoted as "c". As we shall
see below, this orbit is sensitive to pressure and we identified this orbit as in our quantum oscillation measurements. Finally, we
have a small pocket of squashed elliptical surface (dark blue), which we call the "e" orbit. In the case of Td-phase, these orbits
have two counterparts due to SO-splitting.

We have carried out full structure optimization at a given pressure and then calculated the Fermi surface over a dense k-grid
to determine the orbit frequencies using skeaf code14. Our results are summarized in Tables 3 and 4. We note that most of the
orbit-frequencies do not change much with applied pressure but the cup-orbit frequency increases with increasing pressure. As
discussed in the main text, the slope of the frequency increase with pressure is in excellent agreement with the observed shifts
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Supplementary Table 1: Lattice parameters and fractional positions of Td-MoTe2. Lattice parameters and fractional atomic
positions as determined by our neutron diffraction measurements and our DFT+U calculations for Td-MoTe2 (Pmn21).

Experimental Structure
a=3.46464 Å, b=6.30716 Å c=13.84310 Å 90o 90o 90o

Mo 0.000000000 0.606100004 0.497243989
Mo 0.500000000 0.393899996 0.997243989
Mo 0.000000000 0.029300001 0.014242000
Mo 0.500000000 0.970700018 0.514242010
Te 0.000000000 0.865899961 0.653545972
Te 0.500000000 0.134100020 0.153545972
Te 0.000000000 0.641099962 0.112019999
Te 0.500000000 0.358900000 0.612019999
Te 0.000000000 0.287699989 0.857258999
Te 0.500000000 0.712299993 0.357259033
Te 0.000000000 0.214699994 0.401510016
Te 0.500000000 0.785300043 0.901509982
DFT+U Optimized Structure
a=3.51242 Å, b=6.33797 Å c=13.80214 Å 90o 90o 90o

Mo 0.000000000 0.596570039 0.499028659
Mo 0.500000000 0.403429961 0.999028659
Mo 0.000000000 0.043489108 0.012956972
Mo 0.500000000 0.956510911 0.512956982
Te 0.000000000 0.854056153 0.653752430
Te 0.500000000 0.145943828 0.153752430
Te 0.000000000 0.649980885 0.109058347
Te 0.500000000 0.350019077 0.609058347
Te 0.000000000 0.302836245 0.858321051
Te 0.500000000 0.697163737 0.358321085
Te 0.000000000 0.203297619 0.402703515
Te 0.500000000 0.796702418 0.902703481

in the experimental measurements. Hence, we identified this orbit as the one probed in our quantum oscillation measurements.
The topology of the Fermi surface pretty much stays the same with applied pressure up to 16 kbar (i.e. 1.6 GPa). Due to

the reduction of the lattice constants the band overlap gets larger with increasing pressure, which in turn increases the orbit
frequencies. However, at pressures larger than 1.6 GPa, due to strong inter-layer interaction, the hole-band with the square
box shape starts to have an opening at the top/bottom of the box-surface as shown in Figure 8. For comparison, we show the
Fermi surface at 20 kbar for both phases in Fig. 8 but we note that at these pressures, the main phase is the 1T’ phase which is
inversion symmetric. Interestingly the new orbit at the top of the hole-square band has about the same oscillation frequency as
the cup-orbit near 0.65 kT.
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Supplementary Table 2: Lattice parameters and fractional positions of T’-MoTe2. Lattice parameters and fractional atomic
positions as determined by our neutron diffraction measurements at 300 K and our DFT+U calculations for T’-MoTe2 (P21/m).

Experimental Structure
a=6.3281 Å, b= 3.4770 Å c=13.021 Å 90o 93.882o 90o

Mo 0.182799990 0.250000000 0.008300000
Mo 0.817199966 0.750000017 0.991700002
Mo 0.319399986 0.750000017 0.506199997
Mo 0.680599966 0.250000000 0.493799979
Te 0.587999989 0.250000000 0.106399996
Te 0.411999994 0.750000017 0.893599938
Te 0.096600004 0.750000017 0.149299988
Te 0.903399993 0.250000000 0.850699971
Te 0.557100023 0.750000017 0.351300002
Te 0.442900004 0.250000000 0.648699974
Te 0.056299998 0.250000000 0.395299983
Te 0.943700035 0.750000017 0.604699925
DFT+U Optimized Structure
a=6.3422 Å, b=3.5106 Å c=13.8292 Å 90o 93.8907o 90o

Mo 0.181248302 0.250000000 0.007402050
Mo 0.818751654 0.750000017 0.992597952
Mo 0.320793055 0.750000017 0.506405748
Mo 0.679206897 0.250000000 0.493594228
Te 0.589309059 0.250000000 0.103197530
Te 0.410690924 0.750000017 0.896802404
Te 0.097660263 0.750000017 0.147835158
Te 0.902339734 0.250000000 0.852164801
Te 0.559332448 0.750000017 0.352629203
Te 0.440667579 0.250000000 0.647370773
Te 0.057121356 0.250000000 0.396415521
Te 0.942878677 0.750000017 0.603584387

Supplementary Table 3: QO Frequencies (kT) in Td-MoTe2 phase as a function of pressure (kbar). The orbit labels are
defined in Figure 7.

Orbits 0 kbar 2 kbar 4 kbar 6 kbar 8 kbar 10 kbar 12 kbar 14 kbar 16 kbar 18 kbar 20 kbar
h1 0.14 0.15 0.15 0.155 0.16 0.163 0.167 0.17 0.174 0.17 0.17
h2 0.1 0.10 0.10 0.11 0.11 0.104 0.11 0.12 0.116 0.12 0.18
op1 0.235 0.23 0.21 0.22 0.21 0.22 0.21 0.21 0.210 0.204 0.19
op2 0.22 0.22 0.21 0.207 0.20 0.20 0.19 0.19 0.196 0.186 0.18
c1 0.33 0.37 0.405 0.44 0.470 0.506 0.57 0.57 0.601 0.653 0.684
c2 0.294 0.33 0.36 0.395 0.426 0.455 0.51 0.51 0.542 0.600 0.626
e1 0.08 0.06 0.06 0.055 0.06 0.05 0.046 0.045 0.05 0.056 0.04
e1 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.056 0.06
s1 1.90 1.9 1.98 2.01 2.04 2.07 2.10 2.13 2.15 2.21 0.26-2.24
s2 2.16 2.2 2.24 2.27 2.30 2.33 2.36 2.39 2.41 2.42 0.29-2.5

Supplementary Table 4: QO Frequencies (kT) in T’-MoTe2 phase as a function of pressure (kbar). The orbit labels are
defined in Figure 7.

Orbits 0 kbar 2 kbar 4 kbar 6 kbar 8 kbar 10 kbar 12 kbar 14 kbar 16 kbar 18 kbar 20 kbar
h 0.14 0.132 0.136 0.14 0.144 0.147 0.150 0.151 0.152 0.154 0.153
op 0.33 0.29 0.293 0.291 0.294 0.294 0.295 0.291 0.291 0.292 0.292
c 0.26 0.36 0.392 0.425 0.457 0.489 0.520 0.556 0.5854 0.616 0.646
s 1.896 2.027 2.030 2.10 2.130 2.160 2.185 2.245 0.24-2.25 0.47-2.27 0.63-2.3
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Supplementary Figure 5: Fermi surface plots of MoTe2. Fermi surface plots of MoTe2 for various cases; (a) Experimental
structure with and without a U term; (b) Experimental structure with U = 3 eV; the main effect of which is to remove the (cyan)
electron pockets near the Y -point; (c) Fully optimized structure with U =3 eV; Note that it is quite different than the one from

the experimental structure shown in b; (d) Fully optimized structure with U = 3 eV and also with spin-orbit (SO) coupling; The
main effect of spin-orbit coupling is to shrink and expand the surfaces so that they split; Note the significant shrinkage of the

surface shown as dark blue color; (e-f) shows the Fermi surface in the 1T’ phase with optimized structure and U =3 eV. Due to
inversion symmetry, there is no splitting of the Fermi surface in the 1T’-phase but the bands are shifted around and the resulting

Fermi surface is different. Also note that the small electron packet (dark blue in (e)) is removed with the inclusion of SO
coupling (f).
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P=0 kbar P=6 kbar P=10 kbar

P=14 kbar P=20 kbar

Supplementary Figure 6: pressure dependence of electronic band structure of Td-MoTe2. Electronic band structure with
Hubbard U =3.0 eV as a function of applied pressure, showing the effect of pressure on the Weyl point shown as "w". The main

effect is to shift up the energy of the hole-pocket while shifting down the electron-pocket near the Fermi level such that the
Weyl point is roughly invariant under applied pressure, at least up to 14 kbar.
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Supplementary Figure 7: Fermi surface plots of carrier pockets in MoTe2. Top panel shows the main shape of the Fermi
surface in both phases of MoTe2, which consists of three types of bands; The red one is a square like box shape with mainly

hole-character. We denote the orbits around this surface as "s". The main portion of the Fermi surface is electron-like and has a
coffee mug shape (light blue). This shape supports three possible extreme orbits as shown as "op" (which is at the opening of
the surface), as "h" which is the orbit around the handle like shape, and "c" which is the orbit around the cup portion of the

Coffee Mug-shaped Fermi surface. Interestingly, this cup-like shape is the most sensitive to the pressure and the frequency of
this orbit increases with increasing pressure, in excellent agreement with our measurements. Finally, we have a small pocket of

electron Fermi surface (dark blue), which has an ellipsoidal shape and is therefore denoted as "e".
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Supplementary Figure 8: Fermi surface of MoTe2 at 20 kbar pressure for Td phase (top) and for 1T’-phase (bottom).
Note that the center square-box like Fermi surface starts to open at the top with orbit frequencies near 0.65 kT, which is similar

to the cup-site orbit.
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E. Supplementary Note 4: Fermi Surface Pockets and Quantum Oscillations from Td-T’ interface

In this section, we will consider different systems to see if we can reproduce quantum oscillations with frequency near 1 kT
as experimentally observed at the intermediate pressure mixed region.

It is of interest to see what kind Fermi surface and quantum oscillation we have from a finite layers of MoTe2 as these could
be indication of some surface states or maybe the decoupled few layers of MoTe2 during the experiments. Hence, we have
performed DFT calculations for single, double and triple layers of Td-MoTe2 and look at the quantum oscillations from them.
The calculations were done fully self consistently where both atomic positions and lattice parameters were optimized. We used
the same cutoff and k-grid as discussed above. The spin-orbit interactions were also included. We used a super-cell with c-axis
of 20 Ang, which is large enough to minimize the image interactions due to periodic structure.

Figure 9 shows the supercell structures with one, two, and three layers of Td-MoTe2 and the corresponding Fermi surfaces. In
the case of single layer, we have two types of Fermi surfaces; two electron pockets with 0.14 kT orbits and the central hole pocket

0.14 kT

0.3 kT

0.14 kT

0.25 kT

0.25 kT

0.54 kT

0.48 kT

0.04 kT

a) 1L

b) 2L

c) 3L

Supplementary Figure 9: Supercell structure in MoTe2 with variant layers of Td-MoTe2. Supercell structure of MoTe2
with one layer (a), two layers (b) and three layers (c) of Td-MoTe2 and the corresponding Fermi surfaces. The quantum

oscillation frequencies and the orbits are also shown for each case.
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with 0.3 kT orbit. These electron and hole pockets are the foundation of the Weyl points present in these systems. However,
as shown in Figure 9, the Fermi surface is very sensitive to the number of MoTe2 layers present. In the case of double layer,
the hole pocket is pushed down below the Fermi level and only two electron pockets remains. As we shall see below the shape
of the Fermi surface from double layer is quite similar to the interface state but the orbits are about twice smaller than 1kT as
experimentally observed.

The Fermi surface of three layers of MoTe2 is very different; it has cylindrical electron surfaces with oscillation orbits of
0.48-0.54 kT and small pocket with orbit of 0.04 kT. Based on these few layers of MoTe2, it is very unlikely that the observed
quantum oscillations at the intermediate phase could be due to surface state or from somehow decoupled few layers of MoTe2.

F. Supplementary Note 5: Unsuccessful interface models

We first discuss hypothetical Td-like structures with different stacking orders of the MoTe2 planes as a possible source of the
observed quantum oscillations near 1 kT. As discussed in detail in our previous work1, the origin of T’ and Td phases is based
on how the MoTe2 planes are stacked on each other. The phase transition is basically driven by the lowest energy phonon mode
which is related to b-axis displacement of the MoTe2 planes with respect to each other. As shown in Figure 10, sliding one plane
along the b-axis in the Td phase indicates that there is another local minimum in the potential energy and this is related to the T’
phase. Both the energy barrier and energy difference between these two stacking configurations is very small and because of that
it is quite likely that we have many stacking faults during the T’-Td phase transition. Hence, one may wonder how the stacking
faults would affect the Fermi surface and is it possible that the observed oscillation near 1 kT could be due to dislocated MoTe2
planes?

In order to test this idea, we calculated the band structure and the Fermi surface of a MoTe2 phase where the middle plane
is shifted by about 0.32 Å along the b-axis which corresponds to the 2nd local minimum in the potential. This new structure is
almost degenerate with the Td phase. However, the Fermi surface obtained in this phase is very similar to the perfect Td phase
as shown in Fig. 5d with some additional holes on the fermi surface. The quantum oscillation frequencies from this hypothetical
MoTe2 phase are at 0.2 kT, 0.6 kT and near 1.8 kT (hole pocket). Hence, the dislocation of MoTe2 plane can not explain the
experimentally observed high frequency quantum oscillation near 1 kT.

We next consider another type of stacking fault as shown in Figure 11. We note that in the perfect Td phase, the MoTe2 planes
are stacked in a fashion that the Te-distortion is characterized by left (L) and right (R) displacements alternatively as shown in

1.8-1.6 kT

0.6 kT

0.15 kT

0.2 kT

Supplementary Figure 10: Left: Total energy as the middle plane of MoTe2 slides along the b-axis, indicating the presence of
the 2nd local minimum. Since the potential barrier is very low and the energies are very close we expect to see many stacking

faults in MoTe2. Right: Fermi surface from the structure where the middle plane is at the 2nd local minimum. The Fermi
surface is very similar to the MoTe2 phase with Td structure. Hence, this sort of stacking fault cannot explain the observed

quantum oscillation near 1 kT.
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Supplementary Figure 11: Hypothetical structure of left-distorted stacking Td-MoTe2. A hypothetical structure of MoTe2
obtained by stacking left-distorted MoTe2 planes taken from Td phase. The inset shows the optimized lattice parameters as well

as the Fermi surface with orbits for quantum oscillations.

Fig 11. Converting an "R" type MoTe2 plane to "L" type cannot be accomplished by simply sliding the plane, because to go
from "L" type to "R" type, the Te atoms have to move. Based on our initial reaction path calculations, there is no easy path to go
from "L" to "R" plane. Hence, this sort of stacking fault is much more difficult to remove compared to a sliding dislocation. We
construct a hypothetical MoTe2 phase by rotating the middle plane to convert it from "R" to "L" orientation, labeling the new
phase as Td-LL which is shown in Fig. 11. When we did full structure optimization in this stacking order of MoTe2 planes, we
obtained a distorted structure with cell angle of about 94.6 o. The Fermi-surface of this hypothetical structure is shown in the
right panel of Fig. 11. The Fermi surface is very similar to that of ideal Td or T’ phases where the available orbits are around
0.18 kT, 0.55 kT, and 2.2 kT. This structure does not yield any Fermi surface pocket with quantum oscillation near 1 kT. Hence,
this stacking of MoTe2 layers can not explain the observed quantum oscillations near 1 kT either.

To summarize, several models based on MoTe2 stacking faults failed to explain the observed 1 kT quantum oscillation. We
also checked the Fermi surface of single, double or triple layers of MoTe2, none of which has a Fermi surface pocket that gives
a 1 kT quantum oscillations.

G. Supplementary Note 6: Successful interface model

In order to show that we only get quantum oscillations near 1 kT when there is an interface between Td and T’ phases, we
now consider supercell structures that contain both Td and T’ phases. Since the T’ phase has a lattice angle of ≈ 93.4o, we
first confirmed that changing this angle to 90o does not affect the Fermi surface significantly. Once the cell angles are all 90o,
creating a supercell that contains both Td and T’ phase is straightforward. We used the lattice parameters of the Td phase at 10
kbar and created a supercell of six layers. We then took the top three layers out and put in three layers of T’ phase. We then
performed full structure optimization until the forces on all atoms were smaller than 0.01 eV/Ang, including those atoms at the
interface. We used 64x32x3 k-point grids to calculate the Fermi surface.

While building a superlattice of Td and T’ phases, there can exist two types of interfaces depending on how the MoTe2 planes
stack together. We note that in both Td and T’ phases, the Mo atoms move towards the right ("R") or left "L" to lower the local
symmetry and the planes are stacked to keep "R"-"L"-"R"-"L" sequence. Hence, when there is an interface between Td and
T’-phases, we could keep this stacking order as shown on the left panel of Fig. 12. We call this the LR-type interface. This kind
of interface should be easily converted to either Td or T’ phase during the structural phase transition because sliding MoTe2
planes from one minimum to the other does not cost too much energy and the energy barrier for sliding is very small. Hence we
did not consider this type of interface further.

The other possibility for the interface is to match the Td and T’ phase such that the R-L-R-L stacking ordering is not main-
tained. This creates a case where there is either L-L or R-R stacking at the interface as shown on the right panel of Figure 12.
We note that eliminating this interface is not trivial. Converting a "L"-oriented MoTe2 plane to a "R" oriented plane can not be
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Supplementary Figure 12: Interface superlattice structures of Td/T’ MoTe2. Interface superlattice structures consisting of 3
layers of Td MoTe2 and 3 layers of T’ MoTe2 with two possible interfaces; (a) LR-interface where the stacking pattern of "R"
and "L" is preserved as in the case of pure T’ and Td phases; (b) RR-interface where there is no easy path with a low energy

barrier to convert the interface to LR or RL stacking order. Interestingly this interface is 7 meV/atom lower in energy than the
LR-type interface. The new Fermi surface pockets from the LL-interface yield quantum oscillations orbits with frequencies of
approximately 1 kT and 0.2 kT, respectively. These are in close agreement with the experimentally observed oscillations at the

intermediate phase, supporting our picture of TIN phase.

achieved by a simple sliding of the plane as in the case of the LR-type interface. Mo atoms have to move to change the R to
L orientation. DFT reaction-path calculations estimate that the potential barrier for the R–T transition is of the order of 0.5 eV,
which is quite large. Hence, this sort of interface or domain wall will be more difficult to anneal out during the phase transition.
Probably both Mo and Te atoms move in a cooperative way to lower the potential barrier.

In order to understand the energy of the two types of interface further, we calculated the interface interaction energy which is
defined as

En(interface) = En(Td − T′supercell)− (En(Td) + En(T′))/2 (1)

The calculated interface energy for both the LR-type interface and the LL-type interface are given in Figure 12. Both interface
formation energies are positive, meaning that converting the Td-T’ mixed phase into a single phase of either Td or T’ is energeti-
cally more favorable. To our surprise, the LL-type interface actually has a 7 meV/atom lower energy than the LR-type interface.
Hence, between the two possible interfaces, the LL-type interface is energetically favored. This explains why we experimentally
observe a mixed phase between the Td and T’ phase transition, as eliminating this interface requires passing through a large
energy barrier and is therefore not trivial.

We next calculated the Fermi surface of the Td-T’ supercell as shown in Figure12. Comparing the Fermi surfaces with a
perfect 6L superlattice, we determine new states that are shown in the right panel of Figure 12. The larger one has a quantum
oscillation orbit at 0.95-1.07 kT, which is in excellent agreement with the measurements peformed in the intermediate phase.
We also have a small Fermi pocket with quantum oscillation near 0.15 kT, which is close to several low frequency oscillations
below 0.2 kT observed experimentally. These Fermi surfaces are mainly two dimensional but there is some dispersion along the
c-axis as evidenced by the features on the Fermi surface. This small dispersion is due to the finite size of the unit cell, which is
about 41.4 Å, almost too large for DFT calculations but not large enough to avoid small interactions between the images of the
periodic cell.
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Supplementary Figure 13: The topological interface network Td-T’ superstructure model. (a) Three layers of Td and T
slabs when they are separated (top) and joined (bottom). In each case, atomic positions were fully optimized. Fermi surface

obtained from separated and joined slabs without spin-orbit interactions (b) and with spin orbit interactions included (c). The
difference in the Fermi surfaces of the separated (top) and joined slabs (bottom) directly gives the states associated with the
Td-T’interface which is shown in (d). The bottom panel in (d) shows the quantum oscillations from the Td-T’ joined slab

calculations compared with the experimental frequencies.

Even though the periodic superstructure calculation discussed above establishes that the observed quantum oscillation at 1 kT
is due to the Td-T’ interface, it does not demonstrate the interface states clearly, due to significant interactions along the c-axis
and complications due to folding of the bands in the Brillion zone because of the supercell periodicity. To more clearly compare
the interface Fermi surface to that of the bulk, we performed a similar calculation but this time we put together the three layers
of Td and three layers of T’-phases as slabs rather than as a periodic superstructure as shown in Figure 13. In this way, we bring
the Td and T’-slabs towards each other to form the Td and T’ interface. By comparing the Fermi surface of the separated Td and
T’ slabs with that of joined Td-T’ slab, we are able to directly identify the interface states.

Figure13a shows the separated (top) and joined (bottom) Td-T’ slabs, respectively. We used the lattice parameters of the
MoTe2 Td phase at 10 kbar (i.e. 1GPa) pressure. The c-axis of the cell is taken about 4 times the size of c-axis of Td phase at
10 kbar. This gives about 9.5 Å vacuum when the three layer slabs are separated and 16.3 Å vacuum when they are joined. All
the atomic positions were optimized until total forces on atoms are less than 0.01 eV/Å. Once we had the optimized positions,
we carried out Fermi surface calculations using 64x34x1 k-point grids with and without spin orbit interactions. The resulting
Fermi surfaces are plotted in Fig.13. The main effect of the spin-orbit interaction is similar to the case of the bulk; The small
Fermi pockets near (0,ky,0) are pushed below the Fermi level and other bands are split; As in the case of the bulk pure Td phase,
we have two pairs of Weyl points near (±kx,0,0). Comparing the Fermi surface of the separated and joined slabs clearly shows
the new states appearing due to the Td-T’ interface, which is shown in Fig.13d for the case of the Spin-Orbit calculation. We
have two pockets near 1 kT and 0.1 kT. When we plot the quantum oscillation frequencies as Gaussians with equal intensities,
the agreement between experiment and calculation is quite impressive as shown in Fig.13d (bottom panel). Hence our slab-
calculations directly show that the interface state is responsible for the high frequency quantum oscillations near 1 kT that we
observed in the measurements, consistent with the presence of a TIN.

It is possible that folding back of the bands at the Fermi level due to the increased thickness of the MoTe2 plane induces
some new states, which might coincide with those new states in our finite slab calculation. In order to rule out this possibility,
we examined the 2D contour plots of the Fermi surface of bulk Td at 0.8 GPa with various kz values as shown in Fig.14. We
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Td-Phase P=.8 GPa Fermi Surface Cuts at kz=n/6 (n=0,1,2,3)    

kz=0 (-0.02—0.02) kz=1./6  (0.1467—0.1867)

kz=2./6  (0.3133—0.3533) kz=3./6  (0.48—0.52)
kz (-0.5—0.5)

kz =0
kz =1/6
kz =1/3
kz =1/2

Supplementary Figure 14: The 2D contours of 0.8 Gpa Td-MoTe2 Fermi surface at different kz -value. We tune kz = n/6
with the some thickness (kz -0.02, kz +0.02), here n = 0, 1, 2 and 3. The maximum of extension of the Fermi surface in the kx

-ky plane occurs when kz = 0. While kz = 1/3 (corresponding to the 3-layers case), the circular contour increases and can not
go around the contour of the Fermi surface at kz = 0, which conflicts with our interface calculations.

considered kz = n/6 with some thickness (kz -0.02, kz + 0.02), here n = 0, 1, 2 and 3. The maximum of the extension of the
Fermi surface in the kx -ky plane occurs at kz = 0. Overall, contours for other values of kz are smaller. In particular for kz = 1/3
(associated with 3-layers case), the circular contour becomes larger but it is smaller than the one at kz =0, conflicting with our
interface calculations. Therefore, folding back of the Fermi surface bands with increased number of layers can not explain the
additional orbits that we see in the joined-slab calculations.

H. Supplementary Note 7: Relation to Neutron Scattering Results

As a final note, we point out that we have performed very careful neutron diffraction measurements to characterise the crystal
structure. Our neutron data already exclude all the hypothetical structures discussed here. However, it is important to show that
even in the absence of neutron diffraction data, none of these potential structures can give rise to a quantum oscillations near 1
kT. Our supercell structure of Td-T’ as shown in Fig. 12 is also ruled out by the neutron diffraction measurements. Hence we do
not have a superlattice formation with triple c-axis, and the calculated structure of Td-T’ shown in Fig. 12 should be considered
as an approximate structure of the interface between two crystallites of Td and T’phases. Our slab calculations clearly show that
the interface of Td-T’ phase is needed to explain the observed high frequency oscillations. This is direct evidence of our picture
of the TIN phase discussed in the main text.

I. Supplementary Note 8: Angle dependence of Shubnikov-de Haas oscillations at ambient pressure

Here we show angular magnetoresistance measured at ambient pressure and 1.8 K when magnetic field rotates from c axis to
b axis as the insert figure in Fig. 15(a). The beat frequency increases with the increasing of θ, the angle between magnetic field
and c axis as shown in Fig. 15(b). The cross section areas of two electron bands, Fα and Fβ slightly increase with increasing of
θ at 1.8 K.

In order to understand this weak angle dependence of the SdH oscillations, we have calculated the extremal orbits as the
magnetic field is turned as in our measurements. The results are summarized in Figure 15(d). The calculated angle dependence
is also very weak up to 40◦. Due to spin-orbit splitting, near 40◦-60◦, the calculated orbit frequency is suddenly almost doubled
with a resulting complicated orbit that involves both the cup surface and the interior of the mug-shape surface. After this sudden
increase, a new orbit is obtained as the interior of the mug-shape surface (see Fig. 15(d) which has, interestingly almost the same
magnitude as the original frequency. Hence, the overall angle dependence is very weak, as we found in our measurements. It is
unlikely for the electrons to oscillate around such a complicated orbit coherently and therefore one may expect small intensity,
which is consistent with decreasing intensity in our measurements.

The angle dependence of SdH oscillations at ambient pressure maps out two 3D topological Fermi surfaces of two electron
pockets, analyzed using a multiband LK fitting in equation (11). From the magnetoresistance raw data at ambient pressure,
we subtract the second order polynomial background. The FFT spectrum shows three bands, Fγ = 32.5 T, Fα = 240.5 T, Fβ
= 258.0 T and their second and third order harmonic oscillations. The higher harmonic peaks of Fα and Fβ indicate high
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quality and homogeneity of the measured sample. The 1.8 K SdH oscillation data were fitted to an equation describing multiple
bands of a three dimensional LK formula, resulting in the corresponding Berry phases, (φγ = π, φα = 0.88π, and φβ = 0.88π),
indicating that Td-MoTe2 at ambient pressure is a possible three dimensional topological semimetal with 3D topological phase
shift, δ = − 1

8
15,16 for electron pocket using equation (11).
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Supplementary Figure 15: The angle dependent quantum oscillations of bulk MoTe2 at 1.8 K and ambient pressure. (a)
The longitudinal MR measured when magnetic field moves from c axis to b axes ( B // c axis, θ= 0). Schematic represents the
four-point magnetoresistance measurement, in which current flows along the b axis, and magnetic field is rotated from the c

axis to the b axis with angle θ. (b) The corresponding SdH oscillations were observed by calculating the oscillatory
magnetoresistance ∆ρ = ρ− ρbackground above 5.5 T to 14 T. (c) The FFT spectrum of SdH oscillations as a function of the

frequency shows three pockets, whose oscillation frequencies slightly increase above θ > 50◦. (d) The extracted
angle-dependence of the oscillation frequencies along with DFT-calculations. The angle dependence of the quantum

oscillations for the cup-shape orbit as the magnetic field is turned from c-axis (left) to b-axis (right). The insets show the Fermi
surface and the corresponding orbits; For field direction near 40-60◦, due to two closely related Fermi surfaces due to SO

interactions and the complicated the mug-shape surface, the extremal orbit is rather complicated involving both the cup-portion
of the surface and the interior of the mug-shape surface, which may explain the weak intensity of the oscillations for field

directions near b-axis.

J. Supplementary Note 9: Analysis of Shubnikov-de Haas oscillations

The definitions of phase shift and Berry’s phase are derived from the Lifshitz-Onsager quantization relation. By globally
fitting the data to the Lifshitz-Kosevich formula using the program Bumps, we calculate uncertainty and correlation of the
Dingle temperature and Berry’s phase.

The general form of longitudinal conductivity is σxx = ρxx

(ρ2
xx+ρ

2
xy)
, here, ρxx and ρxy are the longitudinal and transverse

resisitivity. In MoTe2, the longitudinal resistivity is always much larger than transverse (Hall) resistivity ( ρxx >> ρxy, three to
four orders larger below 2 GPa20) and σxx ≈ ρ−1xx .

The modified Lifshitz-Onsager quantization relation describes the closed trajectory of a charge carrier by an external magnetic
field B as a function of Berry’s phase and Zeeman splitting parameter S,

An
~
eB

= 2π(n+
1

2
− ΦB

2π
± 1

2
S) = 2π(n+ γ ± 1

2
S). (2)
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Here, An is the cross-sectional area of the Fermi surface related to the Landau level (LL) n, Berry phase ΦB , and splitting
parameter is defined as S = 1

2g
m∗
m0

. m∗ is the effective mass of the charge carrier and g is the Landau g factor.
To analyze the bulk SdH oscillations signal, we adopt the formula of ρxx,

ρxx = ρ0{1 +
5

2

∞∑
r=1

br cos(θ ± rSπ) +R}, (3)

where

R =
3

8

~ωc
EF
{
∞∑
r=1

br[αr cos(θ ± rSπ) + βr sin(θ ± rSπ)]− ln(1− e− 4πΓ
~ωc )}, (4)

br =
1

r
1
2

(
~ωc
2EF

)
1
2

2π2kBT/~ωc
sinh(2π2kBTr/~ωc)

e−
2πΓ
~ωc r, (5)

αr = 2r
1
2

∞∑
s=1

1

[s(r + 1)]
1
2

e−
4πΓ
~ωc s, (6)

βr = r
1
2

r−1∑
s=1

1

[s(r − s)] 1
2

, (7)

and

θ = 2π(r(
BF
B

+ γ)− δ). (8)

Here, ρ0 is the nonoscillatory component of resistivity at zero field, and other parameters are Dingle temperature Td, oscillatory
frequency BF, cyclotron frequency ωc = eB/m∗, Boltzmann’s constant kB and harmonic order r. The Landau level-broadening
width Γ is caused by scattering and associated with Dingle temperature Γ = πkBTD. To extract the Zeeman splitting, we take
the sum of the phase term as

cos(θ + rSπ) + cos(θ − rSπ) = 2 cos θ cos(Srπ) = 2 cos(2π(r(
BF
B

+ γ)− δ)) cos(
1

2
rπg

m∗
m0

)

sin(θ + rSπ) + sin(θ − rSπ) = 2 sin θ cos(Srπ) = 2 sin(2π(r(
BF
B

+ γ)− δ)) cos(
1

2
rπg

m∗
m0

)

Here, 2 cos( 1
2rπg

m∗
m0

) is a reduction factor due to the Zeeman splitting.
Experimentally, oscillatory frequency (BF ) and effective mass (m*) are determined through the FFT of the quantum oscil-

lations signal and the temperature dependence of the amplitude of the oscillations, typically determined at an extremum. δ is
the topological phase shift, which arises from the dimensionality of the Fermi surface, δ = 0 ( or δ = ± 1

8 ) for a 2D (or 3D)
system15,16. In 3D Weyl semimetals without lattice inversion symmetry, the topological phase shift could be either ± 1

8 or ± 5
8

18.
A nontrivial Berry’s phase is defined as |γ − δ| = |1/2 − φB/2π − δ| between 0 and 1/8. Berry’s phase determination is very
sensitive to the Zeeman effect and the Fermi surface might distort close to the quantum limit. The coefficients of R (Eqn. 4)
are very small for the quantum oscillation frequencies and magnetic fields relevant to our measurements and do not affect our
analysis.

Therefore, the longitudinal resistivity is

ρxx = ρ0{1 + 5

∞∑
r=1

[(
~ωc
EF

)1/2 cos(
rπgm∗

2m0
)e

−2π2kBTDr

~ωc

2π2kBTr
~ωc

sinh( 2π2kBTr
~ωc )

cos (2π((
BF
B

+ γ)r − δ))}.

(9)

These periodic SdH oscillations in magnetroresistance follow the Lifshitz-Kosevich (LK) formula for three-dimensional
systems17 as,

A(B, T ) =
∆ρ

ρ0
∝ (

~ωc
EF

)1/2 exp(−2π2kBTD/~ωc)
2π2kBT/~ωc

sinh(2π2kBT/~ωc)
. (10)



21

(a)

(b)

(c) (d)

(f)(e)
1 atm

1 atm

0.6 Gpa

0.9 Gpa0.9 Gpa

1.8 Gpa 1.8 Gpa

Supplementary Figure 16: The fit of the oscillation patterns. Multiple band LK fits to MoTe2 quantum oscillations measured
at 1.8 K and (a) 1 atm (Physical Property Measurement System PPMS), (b) 0.6 GPa (dilution refrigerator down to 0.1 K).

Higher pressure cases (c, d) 0.9 GPa at 0.27 K and (e,f) 1.8 GPa at 0.3 K (Oxford Heliox).

The first order harmonic of the 3D LK formula dominates the oscillation signal17, giving

ρxx = ρ0[1 +A(B, T ) cos(
πgm∗
2m0

) cos 2π(
BF
B
− δ + γ)]. (11)

If the Zeeman splitting term does not change within the experimental magnetic field (namely, each g factor for each band remains
a constant over the experimental field range), this term is decoupled from the phase of oscillations, such that

ρ0A(B, T ) cos(
πgm∗
2m0

) = A0, (12)

Thus, the g factor only modifies the oscillation amplitude (A0) and will not change the phase of oscillations. Therefore, the
Berry’s phase and the phase shift δ are decoupled from the g factor and Zeeman parameter. Following convention, the amplitude
A is kept positive. Typically, the g factor of these transition metal dichalcogenide are positive. Note that when 4n+1 < gm∗

m0
<

4n + 3, where n is an integer, Eq. 12 yields a negative value of A0. This condition is met in the conventional case when g = 2
and m∗

m0
= 1. In our fits, this results in a π phase shift, which is captured by the 1

2 term in the equation 1
2 - φB

2π - δ. We expect
that this condition is true also in our analysis. The values of φB displayed in Supplementary Tables 5 and Supplementary Table
6 correspond to the measured phase shift, with a factor of 1

2×(2π) subtracted. An important caveat is that the value of g is not
independently known, and it is therefore not known whether the extra factor of 1

2×(2π) is always appropriate. However, due to
the large variation in m* (Supplementary Table 6), it would require a dramatic coincidence for every band to exhibit a value of
gm∗
m0

that results in a positive amplitude. We demonstrate the LK fits under different field ranges for four pressure cases as shown
in figure 16. The consistent π Berry’s phases in Table 6 confirm that the g factor for each band is a constant and decoupled from
Berry’s phase.
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P (GPa) field range (T) φγ (π) φα (π) φβ (π)

∼0

6-14 0.97 0.89 0.88
6.6-14 0.999 0.883 0.883
7.6-14 1.000 0.877 0.879
8.4-14 1.000 0.871 0.873
8.4-13 0.947 0.876 0.877

0.6

6-15 0.95 0.89 0.88
6.8-15 0.964 0.878 0.886
7.9-15 0.963 0.878 0.889
9.4-15 0.963 0.877 0.894

P (GPa) field range (T) φλ (π) φµ (π) φν (π) φδ (π)

0.9

6.8-18 0.86 0.93 0.88 1.02
7.4-18 0.862 0.932 0.881 1.008
8.6-18 0.861 0.932 0.881 1.009

10.5-18 0.862 0.934 0.882 1.009
8.6-16.4 0.867 0.946 0.885 1.038

P (GPa) field range (T) φω (π) φσ (π) φζ (π) φη (π)

1.8

6-18 0.98 0.77 1.20 1.10
7.7-18 0.966 0.756 1.188 1.111

8.88-18 0.963 0.759 1.187 1.112
8.9-13.4 0.935 0.776 1.290 1.052
11.93-18 0.961 0.758 1.182 1.113

Supplementary Table 5: Berry’s phase determined over different field ranges. Here, we show that the consistent Berry’s
phase is consistent for fits performed over different field ranges. The invariant of π Berry’s phase suggests that g factor does not

change within the field range.

K. Supplementary Note 10: Global fitting- Bumps

Finding the global minimum of fits to the Lifshitz-Kosevich formulam with multiple bands is nontrivial because of the large
number of fitting parameters, which may be correlated. Bumps is a set of free and public routines for complicated curve fitting,
uncertainty analysis and correlation analysis from a Bayesian perspective19. Bumps provides uncertainty analysis and explores
all viable minima and finds confidence intervals on the parameters based on uncertainty from experimental errors. First, we
applied gradient descent to quickly search local minimum and included the real experimental errors for global fitting of the LK
formula, in other words, to the full magnetic field range of measured quantum oscillations. To see the distributions of uncertainty
and correlation plots, we ran Bumps for the the rest of the variables: amplitude, Dingle temperature and Berry phase, and found
convergence of these fitting parameters.

Bumps includes Markov chain Monte Carlo (MCMC) methods19 to compute the joint distribution of parameter probabilities.
The MCMC explores parameter space using a random walk and requires hundreds of thousands of function evolutions to explore
the search space. The histogram range represents the 95 % credible interval, and the shaded region represents the 68 % credible
interval. For full uncertainty analysis, Bumps uses a random walk to explore the viable parameter space near the minimum,
showing pair-wise correlations between the different parameter values. The 2D correlation plots indicate the correlation rela-
tionship between multiple parameters in the fitting function. We checked the convergence of fits and compared different local
minima to get the global minimum. Figure 16 shows the best fit curves of SdH oscillation signal from 1 atm to 1.8 GPa. We
show the expectation value and uncertainties for fitting data at 1 atm (Fig. 17), 0.6 GPa (Fig. 18), 0.9 GPa (Fig. 19) and 1.8 GPa
(Fig. 20).
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P (GPa) label F (T) Td (K) m∗ (me) φ (π) µ(cm2/vS)

∼0
γ 32.50 19.81 0.31 0.97 348.30
α 240.50 4.99 0.53 0.89 809.90
β 258.00 6.14 0.59 0.88 557.77

0.6
γ 35.00 18.20 0.30 0.95 456.46
α 330.30 4.16 0.71 0.89 720.95
β 355.00 9.16 0.63 0.88 372.41

0.9

λ 32.00 7,91 0.21 0.87 1635.88
µ 170.00 5.12 1.02 0.93 436.44
ν 245.00 2.97 1.08 0.88 629.26
δ 966.00 3.54 1.75 1.02 350.83

1.8

ω 53.00 3.48 0.47 0.98 1324.20
σ 110.00 8.48 0.57 0.77 438.90
ζ 158.00 6.88 0.81 1.20 381.37
η 690.00 3.94 0.97 1.10 558.02

Supplementary Table 6: The fitting parameters of the LK formula fits to MoTe2 quantum oscillations under pressure P.
We obtained oscillation frequency F from FFT, effective mass m∗ and corresponding quantum mobility µ from the temperature

dependence of FFT. Here, the sum of Berry’s phase and phase shift, φ ( φ = 1
πφB ± δ and phase shift determined by the

dimensionality of Fermi surface, δ = 0 or δ = ± 1
8 for 2D or 3D ) could be directly determined from the LK formula.
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Supplementary Figure 17: The uncertainty and correlation plot of fitting parameters in LK formula at ambient pressure.
This is the (a) uncertainty of Lifshitz-Kosevich formula fitting to MoTe2 data at 1.8 K and 1 atm. The Berry’s phases of the
γ(Gamma1), α(Gamma2), and β(Gamma3) oscillations are (0.97 ± 0.02)π, (0.89 ± 0.01)π and (0.88 ± 0.01)π. (b) The 2D

correlation plots between each pair of parameters in the fits. There is positive correlation between maximum oscillation
amplitude and Dingle temperature. The Berry’s phase shows no correlation with Dingle temperature and oscillation amplitude.
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Supplementary Figure 18: The uncertainty and correlation plot of fitting parameters in LK formula at 0.6 GPa. This is
the (a) uncertainty of Lifshitz-Kosevich formula fitting to MoTe2 data at 0.1 K and 0.6 GPa. The Berry’s phases of the

γ(Gamma1), α(Gamma2), and β(Gamma3) oscillations are (0.95 ± 0.05)π, (0.89 ± 0.01)π and (0.87 ± 0.01)π. (b) The 2D
correlation plots between each pair of parameters in the fits. The Berry’s phase shows no correlation with Dingle temperature.
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Supplementary Figure 19: The uncertainty and correlation plot of fitting parameters in LK formula at 0.9 GPa. This is
the (a) uncertainty of Lifshitz-Kosevich formula fitting to MoTe2 data at 0.27 K and 0.9 GPa. The Berry’s phase of the

λ(Gamma1), µ(Gamma2), ν(Gamma3), and δ(Gamma4) oscillations are (0.87 ± 0.01)π, (0.93 ± 0.02)π, (0.88 ± 0.07)π, and
(1.02 ± 0.08)π. (b) The 2D correlation plots between each pair of parameters in the fits. The Berry’s phase shows no

correlation with Dingle temperature.
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Supplementary Figure 20: The uncertainty and correlation plot of fitting parameters in LK formula at 1.8 GPa. This is
the (a) uncertainty of Lifshitz-Kosevich formula fitting to MoTe2 data at 0.3 K and 1.8 GPa. The Berry’s phase of the

ω(Gamma1), σ(Gamma2), ζ(Gamma3), and η(Gamma4) oscillations are (0.98 ± 0.02)π, (0.77 ± 0.03)π, (1.20 ± 0.03)π, and
(1.10 ± 0.01)π. (b) The 2D correlation plots between each pair of parameters in the fits. The Berry’s phase shows no

correlation with Dingle temperature.
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Supplementary Figure 21: Quantum oscillations of magnetoresistance in MoTe2 at 0.8 GPa. (a) The longitudinal MR, (b)
SdH oscillations and (c) corresponding FFT of the bulk MoTe2 sample measured at 1.8 K with magnetic field parallel to c axis.
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Supplementary Figure 22: Quantum oscillations of magnetoresistance in MoTe2 at 1.1 GPa. (a) The longitudinal MR, (b)
SdH oscillations and (c) corresponding FFT of the bulk MoTe2 sample measured at 0.3 K with magnetic field parallel to c axis.
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Supplementary Figure 23: Quantum oscillations of magnetoresistance in MoTe2 at 1.2 GPa. (a) The longitudinal MR, (b)
SdH oscillations and (c) corresponding FFT of the bulk MoTe2 sample measured with magnetic field parallel to c axis.
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