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Single-component superconductivity in UTe2 
at ambient pressure
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The microscopic mechanism of Cooper pairing in a superconductor leaves 
its fingerprint on the symmetry of the order parameter. UTe2 has previously 
been inferred to have a multi-component order parameter, in part due to 
the apparent presence of a two-step superconducting transition in some 
samples. However, recent experimental observations in newer-generation 
samples have raised questions about this interpretation, pointing to the 
need for a direct probe of the order parameter symmetry. Here we use 
pulse-echo ultrasound to measure the elastic moduli of UTe2 in samples that 
exhibit both one and two superconducting transitions. We demonstrate the 
absence of thermodynamic discontinuities in the shear elastic moduli of 
both single- and double-transition samples, providing direct evidence that 
UTe2 has a single-component superconducting order parameter. We further 
show that superconductivity is highly sensitive to compression strain along 
the a and c axes but insensitive to strain along the b axis. This leads us to 
suggest a single-component, odd-parity order parameter—specifically the 
B2u order parameter—as most compatible with our data.

Definitive determination of the superconducting pairing symmetry has 
been accomplished for only a handful of materials, among them the 
s-wave Bardeen–Cooper–Schrieffer superconductors and the d-wave 
cuprates1. In some superconductors, such as Sr2RuO4, debate over the 
pairing symmetry has persisted for decades despite ultra-pure samples 
and an arsenal of experimental techniques2–4. This is more than an 
issue of taxonomy: the pairing symmetry places strong constraints 
on the microscopic mechanism of Cooper pairing, and some pairing 
symmetries can lead to topological superconducting states5.

The question of pairing symmetry is nowhere more relevant than in 
UTe2, where in addition to power laws in thermodynamic quantities6–9, 
the most striking evidence for unconventional superconductivity 
is an extremely high upper critical field Hc2 compared with the rela-
tively low critical temperature7,10. Remarkably, for some field orienta-
tions, the superconductivity re-emerges from a resistive state above 

approximately 40 T and persists up to at least 60 T (ref. 11). This high 
Hc2 constrains the spin component of the Cooper pair to be spin-triplet, 
which in turn constrains the orbital component of the Cooper pair to 
be odd under inversion (that is odd parity, such as a p- or f-wave state). 
However, there are many possible odd-parity order parameters and 
which one—or which pair, if UTe2 is a two-component superconductor 
as suggested12—manifests in UTe2 is unknown.

The primary question we address here is regarding the degeneracy 
of the orbital part of the superconducting order parameter. In addition 
to even (s- or d-wave) and odd (p- and f-wave) designations, order 
parameters can have multiple components: both conventional s-wave 
and high-Tcdx2−y2-wave order parameters are described by a single 
complex number, whereas the topological px + ipy state has two com-
ponents, namely px and py. Evidence for a two-component order param-
eter in UTe2 stems from the presence of two distinct superconducting 
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pressure splits single-Tc samples into two-Tc samples18,19, suggesting that 
two superconducting order parameters are, at the very least, nearly 
degenerate with one another.

The natural way to distinguish between single-component and 
two-component order parameters is to apply strain. Single-component 
superconductors have a single degree of freedom—the superfluid den-
sity—that couples to compression strains, producing a discontinuity 
in the compressional elastic moduli at Tc (Fig. 1). Single-component 
superconductors, however, have no such discontinuity in their shear 
moduli because shear strains preserve volume and thus do not couple 
to superfluid density. Multi-component superconductors, on the other 
hand, have additional degrees of freedom: the relative orientation of 
the two order parameters, as well as their relative phase difference. 
These additional degrees of freedom couple to shear strains, producing 
discontinuities in the shear moduli at Tc. By identifying which elastic 
moduli have discontinuities at Tc, one can determine whether a super-
conductor is multi-component without any microscopic knowledge 
of the Fermi surface or the pairing mechanism.

Results
We use a traditional phase-comparison pulse-echo ultrasound tech-
nique to measure the temperature dependence of six elastic moduli 
in three different samples of UTe2 over a temperature range from 
approximately 1.3 to 1.9 K. In particular, we measure all three compres-
sional (that is, c11, c22 and c33) and shear (that is, c44, c55 and c66) moduli 
in one sample with two superconducting transitions (S3: Tc,1 ≈ 1.64 K, 
Tc,2 ≈ 1.60 K) and in two samples with a single Tc (S1: Tc ≈ 1.63 K and S2: 
Tc ≈ 1.70 K). Ultrasound data in the normal state of UTe2 have been 
reported by Ushida et al.20. Here, we focus on the superconducting 
transition. Details of the sample growth and preparation, as well as 
the experiment, are given in Methods.

Figure 2 shows the relative changes in four elastic moduli across 
Tc for the single-transition samples S1 and S2. We observe a single, 
sharp (approximately 85 mK wide) discontinuity in the c33 compres-
sional modulus, as expected for all superconducting transitions. We 
observe no discontinuities in any of the shear elastic moduli to within 
our experimental resolution (a few parts in 107; see Supplementary 
Figs. 5 and 6 for details).

Figure 3 shows the relative changes in the elastic moduli for sample 
S3 with a double superconducting transition (the single-Tc data are 
reproduced here for comparison). We observe two distinct discontinui-
ties in c33 separated by approximately 40 mK. Subsequent specific heat 
measurements on the same sample show a similar double peak feature 
identified in other double-Tc samples12 (specific heat data are shown in 
Supplementary Fig. 7). Notably, we find the sum of the discontinuities 
in the double-Tc sample to be of a similar size as the discontinuity in 
the single-Tc sample. Additionally, the behaviour of the shear elastic 
moduli is nearly identical to that of the single-Tc samples, again with 
no discontinuities at Tc.

We also measure the two other compressional moduli—c11 and 
c22—and show them along with c33 in Fig. 4. c11 has a discontinuity of 
approximately 20 parts per million—roughly a factor of 2 smaller than 
the discontinuity in c33. In contrast, c22 has a discontinuity of at most 
1 part per million—significantly smaller than the other two compres-
sional moduli. Discontinuities in all three compressional moduli are 
allowed by symmetry for any superconducting order parameter (see 
ref. 2 and ‘Landau free energy calculations’ section in Supplementary 
Information).

We first analyse the data using only the presence or absence of 
discontinuities in the elastic moduli. This analysis is based on symmetry 
arguments alone and is independent of the size of the discontinuities. 
We then perform a quantitative analysis of the discontinuities using 
Ehrenfest relations. Finally, we combine all of our observations to 
speculate on which particular superconducting order parameter is 
most consistent with our data.

transitions in some samples, as well as from the onset of time-reversal 
symmetry breaking at Tc (refs. 12,13). Combined with evidence for 
spin-triplet pairing, these observations have led to several proposed 
exotic, multi-component order parameters for UTe2 (Table 1). These 
multi-component states can have a topological structure that could 
explain other experimental observations, such as the chiral surface 
states seen in scanning tunnelling microscopy (STM)14 or the anoma-
lous normal component of the conductivity observed in microwave 
impedance measurements15.

Claims of a multi-component order parameter are not without 
controversy, however. As the purity of the samples has increased, Tc 
has shifted to higher values and the second transition has disappeared 
at ambient pressure16. Previous work has suggested that two transi-
tions arise due to inhomogeneity17, but the application of hydrostatic 

Table 1 | Proposed order parameters for UTe2

Dimensionality Representation Shear 
discontinuity?

Reference  
(E, experiment;  
T, theory)

One component

Au No
E: NMR30

E: scanning 
SQUID31

B2u No E: ultrasound (this 
work)

B3u No

T: DFT32

E: NMR33,34

E: scanning 
SQUID31

No
E: specific heat16,17

E: uniaxial stress26

Two component

{B1u, Au} c66

E: microwave 
surface 
impedance15

E: specific heat, 
Kerr effect12

{B3u, Au} c44

E: penetration 
depth8

E: NMR35

{B1u, B2u} c44

T: 3He A-phase-like 
pairing36,37

E: specific heat9

{B1u, B3u} c55

T: phenomenology 
+ DFT38

T: DFT39

{B2u, B3u} c66

T: DFT22,23

E: specific heat, 
Kerr effect12,13

T: emergent D4h 
symmetry24

Yes

E: STM14

T: pair-Kondo 
effect40

T: MFT of Kondo 
lattice41

Proposed odd-parity order parameters for UTe2, sorted by the number of components 
(dimensionality), their irreducible representation and whether the proposed order parameter 
is based on an experimental observation or a theoretical proposal. Scenarios listed without 
a specific representation are compatible with any type of one- or two-component order 
parameter. On the basis of symmetry alone, our work strongly constrains the order parameter 
to be of the one-component type. Using more quantitative arguments, we suggest a B2u 
order parameter. NMR, nuclear magnetic resonance; SQUID, superconducting quantum 
interference device; DFT, density functional theory.
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Symmetry of the superconducting order parameter
The presence or absence of a discontinuity in each elastic modulus 
constrains the symmetry of the superconducting order parameter. 
Roughly speaking, only strains that couple linearly to a degree of 
freedom associated with the superconducting order parameter show 
discontinuities at Tc. We illustrate this with a couple of examples; a 
more rigorous derivation is given in ‘Landau free energy calculations’ 
in Supplementary Information.

Discontinuities in elastic moduli arise when there is coupling 
between strain and superconductivity that is linear in strain and quad-
ratic in the order parameter. For a single-component superconducting 
order parameter, this only occurs for compression strains21.  
A single-component order parameter can be written as η = η0eiϕ, where 
η0 is the magnitude of the gap (which may depend on momentum) and 
ϕ is the superconducting phase. The lowest-order coupling to a strain 
ϵij is ϵijη⋆η = ϵijη2

0, where the asterisk denotes complex conjugation. 
This coupling is allowed only if ϵij preserves the symmetry of the lattice; 
that is, it is only allowed for compression strains and not for shear 

strains (which break the lattice symmetry). Since η2
0 is proportional to 

the superfluid density, the physical interpretation of the resulting 
discontinuity at Tc is that compression strain couples to the superfluid 
density, which turns on at Tc and provides a new degree of freedom that 
softens the lattice.

In contrast to single-component order parameters, 
multi-component order parameters can have discontinuities in  
shear elastic moduli. This is because there are more degrees of freedom 
associated with a multi-component order parameter than with a 
single-component order parameter. Writing a two-component order 
parameter as ⃗η = {η0,ieiϕi ,η0, jeiϕj } , there are now several possible 
couplings at lowest order. Taking the well-known px + ipy state  
in tetragonal crystals as an example, one possible coupling is 
ϵxyη0,pxη0,py cos (ϕpx − ϕpy ). This is the so-called phase mode of the 
order parameter, as it couples ϵxy shear strain to the relative phase of 
the two components (Fig. 1). This produces a discontinuity in the associ-
ated elastic modulus c66. The relative phase is a new degree of freedom 
that is only present in a multi-component order parameter, as strain 
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Fig. 1 | The influence of strain on one- and two-component superconductors. 
a, An illustration of how two representative order parameters—single-
component s-wave and two-component px + ipy—respond to both compression 
and shear strain. Both gaps respond under compression (whether increasing 
or decreasing in magnitude depends on microscopic details). Only the two-

component gap, however, couples to shear strain—here we illustrate the phase 
mode (see ref. 2 for more details). b, The expected changes in elastic moduli 
across Tc for one- and two-component order parameters. All superconductors 
have a discontinuity in their compressional moduli across Tc, but only two-
component superconductors have discontinuities in their shear moduli.
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Fig. 2 | Relative change in elastic moduli through Tc for single-Tc UTe2. The 
compressional elastic modulus c33 shows a sharp discontinuity—as expected for 
all superconductors—of approximately 40 parts per million at Tc. In contrast, the 
shear elastic moduli c44, c55 and c66 show only changes in slope at Tc, consistent 

with a single-component superconducting order parameter. Arrows mark the 
superconducting transition for all shear moduli. Δcii/cii is defined as 
(cii(T) − cii(T0)) /cii(T0), where T0 is the highest temperature shown.
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cannot couple to the absolute phase of a single-component order 
parameter (such a term would break gauge symmetry). Similar expres-
sions exist for orthorhombic crystals (see ‘Landau free energy calcula-
tions’ section in Supplementary Information for details), but the main 
conclusion is independent of the crystal structure: shear elastic moduli 
only exhibit discontinuities at Tc for multi-component superconducting 
order parameters.

The absence of a discontinuity in any shear elastic modulus 
in the single-transition samples (S1 and S2) rules out essentially 
all two-component order parameters in UTe2. While there are no 
natural two-component order parameters in UTe2 because the 
crystal structure is orthorhombic, many nearly or accidentally 
degenerate order parameters have been proposed to explain the 
presence of the two nearly degenerate Tc’s, time reversal symmetry 
breaking and chiral surface states (Table 1). One proposal is the 
onset of first a B2u state followed by a B3u state at the second, lower Tc  
(refs. 12,13,22–24). This proposal predicts the usual discontinuities 
in compressional moduli at the first (higher) Tc, followed by a dis-
continuity in the compressional moduli and the c66 shear modulus 
at the lower Tc. In fact, the product of any two odd-parity (that is 
p- or f-wave) states or any two even-parity (that is s- or d-wave) states 
in D2h predicts a discontinuity in either c44, c55 or c66, none of which 
we observe. This strongly constrains the superconducting order 
parameter of UTe2 to be of the single-component type. Finally, we 
note that our data are fully consistent with any single-component 
order parameter, including even-parity states such as s-wave  
and d-wave.

The similar absence of discontinuities in the shear elastic moduli 
of the two-transition sample (S3) rules out the multi-component 
explanation for the second superconducting transition. We find that 
the single discontinuity in c33 in single-Tc samples is approximately 
the same size as the sum of the two discontinuities found in double-Tc 
samples. This suggests that, below the second transition, all electrons 
in UTe2 are in the same thermodynamic state, rather than double-Tc 
samples having two separate superconducting mechanisms. This 
suggests a common origin for the two superconducting transitions, 
perhaps split by local strains17 or magnetic impurities25. Why this usu-
ally manifests as only two sharp Tc’s (as we also observe in our data), 
rather than as multiple Tc’s or as a broad transition, remains an open 
question. It also leaves unresolved the issue of why even single-Tc 
samples become double-Tc samples under hydrostatic pressure, 
leaving open the possibility of a multi-component order parameter 
under pressure.

Coupling of compression strains to superconductivity
The smallness of the discontinuity in c22 compared with the other two 
compressional moduli indicates that the superconductivity in UTe2 
is insensitive to strain along the b axis (ϵyy). This observation is made 
quantitative through Ehrenfest relations, which relate discontinuities 
in the elastic moduli, δcij, to the discontinuity in the specific heat, ΔC. 
The Ehrenfest relations are

δcij = −ΔC
T (dTc

dϵij
)
2

, (1)
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Fig. 3 | Relative change in elastic moduli through Tc for double-Tc UTe2.  
The compressional elastic modulus c33 shows two distinct discontinuities at Tc, 
consistent with the two peaks we find in the specific heat of the same sample. 
The shear moduli, on the other hand, show no discontinuities and behave nearly 
identically to the shear moduli of the single-Tc sample. Single-(double-)transition 

samples are shown with empty (filled) symbols. Empty (filled) arrows mark the 
superconducting transition for all shear moduli for single-(double-)transition 
samples. Δcii/cii is defined as in Fig. 2, and curves have been offset vertically  
for clarity.

0

S2 S3 S1

∆c
ii/

c i
i (

10
–5

)

–2

–1

–3

–4

1.4 1.6 1.8 1.4 1.6 1.8 1.4 1.6 1.8

T (K)

C11 C22 C33

Fig. 4 | Relative change in compressional elastic moduli through Tc. The compressional elastic moduli as functions of temperature through Tc. c33 and c11 were 
measured on a single-Tc sample, and c22 was measured on the double-Tc sample. Both c11 and c33 show clearly resolvable discontinuities at Tc, whereas c22 shows a barely 
resolvable discontinuity. Δcii/cii is defined as in Fig. 2.
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where dTc
dϵij

 is the derivative taken at zero applied stress. Using the specific 

heat measured on sample S3 (Supplementary Figs. 7 and 8) and the 

data shown in Fig. 4, we calculate dTc
dϵxx

= 0.23 ± 0.02  K per % strain, 

dTc
dϵyy

= 0.07 ± 0.02 K per % strain and dTc
dϵzz

= 0.34 ± 0.02 K per % strain. 

These values are roughly consistent with those measured in uniaxial 
strain experiments26 (see Supplementary Table 2 for a quantitative 
comparison).

These Ehrenfest relations indicate that the superconductivity of 
UTe2 is substantially more sensitive to strains along the a and c axes than 
it is to strain along the b axis. This observation is perhaps surprising 
given the relatively quasi-two-dimensional nature of the Fermi surface 
measured by quantum oscillations in UTe2 (refs. 27,28). This Fermi 
surface consists of two sets of quasi-one-dimensional sheets running 
along the a and b axes that hybridize to form one electron and one 
hole pocket (Fig. 5). Thus, if any direction is to be weakly coupled to 
superconductivity, one might expect it to be the c axis. This argument 
is unchanged by the possible existence of an additional small pocket 
of Fermi surface reported by Broyles et al.29, as it is roughly isotropic 
and thus does not single out any particular direction.

Looking at the crystal structure in Fig. 5, however, it is clear that 
the a and b axes are very different: chains of c-axis-coupled uranium 
dimers run along the a axis, whereas chains of tellurium run along the b 
axis (the other tellurium site, Te(1), participates much less in the Fermi 
surface than the Te(2) chains; Supplementary Figs. 9 and 10). Thus, ϵxx 
and ϵzz modulate the inter- and intra-dimer coupling of the uranium 
dimers, respectively, whereas ϵyy only modulates the weak inter-chain 
coupling of the uranium chains. ϵyy does, however, modulate the spac-
ing between tellurium atoms in the tellurium chains that run along the 
b axis. Our observation of the relative insensitivity of Tc to ϵyy therefore 

suggests that the superconducting pairing is more sensitive to the 
uranium–uranium distances than to the tellurium–tellurium distances.

Proposed single-component superconducting order 
parameter
Thermal transport6, specific heat7,9 and penetration depth8 all suggest 
the presence of point nodes in the superconducting gap of UTe2. B1u, B2u 
and B3u order parameters all have point nodes in their superconducting 
gaps, but these nodes lie along different directions in momentum space 
and thus intersect different portions of the Fermi surface (or may not 
intersect the Fermi surface at all if it is quasi-2D).

We use our observation of relatively weak coupling between ϵyy and 
Tc to motivate a particular orientation of the point nodes in UTe2 and 
to suggest one particular single-component order parameter. Figure 5 
shows a tight binding model of the Fermi surface of UTe2 as determined 
by quantum oscillations, colour-coded by the relative uranium 6d and 
tellurium 5p content (both bands have substantial uranium 5f character 
that contributes to their heavy masses but not to their geometry). Our 
results suggest that the superconducting gap is either weak or absent 
on the tellurium-dominant electron Fermi surface. Only the B2u order 
parameter has nodes that lie along the ky direction, producing a node 
in the gap on the tellurium-dominant surface and a gap maximum on 
the uranium-dominant surface. We note that a reported small pocket 
with a light mass does not qualitatively affect this argument29, as it is 
largely isotropic in shape and thus will not respond differently to ϵxx 
and ϵyy strain.

Discussion
Our discovery of a single-component order parameter places strong 
constraints on possible explanations for other experimental obser-
vations. First, a single-component order parameter cannot break 
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Fig. 5 | Influence of compression strains on the crystal structure and Fermi 
surface of UTe2. a, The crystal structure of UTe2. Highlighted are tellurium chains 
along the b axis and chains that run along the a axis consisting of c-axis-oriented 
uranium dimers. b, The geometry of the Fermi surface, modelled after quantum 

oscillation measurements, which is dominated by the chains shown in a27. The 
Fermi surface is coloured according to its uranium (yellow) and tellurium (grey) 
content. c, The superconducting gaps (blue lines) for three possible odd-parity 
order parameters at kz = 0.
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time reversal symmetry. This suggests that the interpretation of time 
reversal symmetry breaking at Tc as seen by polar Kerr effect meas-
urements12,13, along with the chiral surface states seen in STM14 and 
microwave surface impedance measurements15, needs to be revisited.

The search for multi-component superconductors continues: they 
are of both fundamental and practical interest, since a multi-component 
order parameter is a straightforward route to topological supercon-
ductivity. We find that, while UTe2 may have an odd-parity, spin-triplet 
order parameter, it seems that the most likely order parameter to 
condense at Tc is of the single-component B2u representation: either 
py- or fyz2-wave superconductivity. Definitive determination of the 
orientation of the nodes in the superconducting gap would confirm 
this scenario.
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Methods
Sample growth and preparation
Single crystals of UTe2 were grown by the chemical vapour transport 
method as described in refs. 7,42. Samples with one Tc (two Tc’s) were 
grown in a two-zone tube furnace with temperatures of 950 °C and 
860 °C (1,060 °C and 1,000 °C) at the hot and cold end, respectively.

Specimens were aligned to better than 1° using their magnetic 
anisotropy (performed in a Quantum Design MPMS) and X-ray dif-
fraction (performed in a Laue backscattering system) measurements. 
Samples were then polished to produce two parallel faces normal to the 
(100), (010) and (001) directions, depending on the mode geometry 
(Extended Data Table 1).

Thin-film ZnO piezoelectric transducers were sputtered from 
a ZnO target in an atmosphere of oxygen and argon. Both shear and 
longitudinal responses are present in each transducer—the shear axis 
was aligned with either (100), (010) or (001), again depending on the 
particular mode geometry. Three crystals were measured in total (see 
Extended Data Table 1 for details). The shear response in our deposited 
transducers was achieved by mounting the sample on the far end of the 
sputtering sample stage, maximizing the distance between the sample 
and the ZnO target. The position of the sample stage was fixed during 
the entire deposition process (that is, rotation was disabled on the 
sample stage). The resulting polarization direction of the generated 
sound wave is then parallel to the shortest line drawn between the 
sample and the target—this orientation was verified using the absolute 
speed of sound and the moduli obtained using resonant ultrasound 
spectroscopy43.

Pulse-echo ultrasound measurements
Measurements were performed in an Oxford Instruments Heliox 3He 
refrigerator. We used a traditional phase-comparison pulse-echo ultra-
sound method to measure the change in elastic moduli relative to the 
highest temperature T0; that is, we measured Δc/c ≡ (c(T ) − c(T0)) /c(T0). 
Short bursts (typically ~50 ns) of radiofrequency signals, with the car-
rier frequency between 500 MHz and 2.5 GHz, were generated with a 
Tektronix TSG 4106A RF generator modulated by a Tektronix AFG 31052 
arbitrary function generator, amplified by a Mini-Circuits ZHL-42W+ 
power amplifier, and transmitted to the transducer. The signal was 
detected with the same transducer, amplified with a Mini-Circuits 
ZX60-3018G-S+ amplifier and recorded on a Tektronix MSO64 oscil-
loscope. The detection amplifier was isolated from the power amplifier 
using Mini-Circuits ZFSWA2-63DR+ switches, timed with the same 
Tektronix AFG 31052 arbitrary function generator.

Both shear and compressional sound are generated by our trans-
ducers—these signals are separated in the time domain owing to the 
different speeds of propagation and identified as shear or compres-
sion using the known elastic moduli of UTe2 (ref. 43). Extended Data 
Fig. 1 shows a raw pulse-echo signal from a transducer sputtered on 
sample S3 with sound propagating along the [010] direction with a 
shear polarization axis along [100], thus measuring c22 and c66 simul-
taneously. Echoes corresponding to the different elastic modes can be 
clearly identified as shear (vertical dashed red lines) and compression 
(vertical dashed blue lines).

The phase of each echo was analysed using a software lock-in, and 
the relative change in phase between two echoes was converted to 
the relative change in speed of sound as a function of temperature. In 
Extended Data Fig. 2, we compare the temperature dependence of c33 
of samples S1 and S3 obtained with different transducers.

Data availability
Data that support the plots within this paper and other find-
ings of this study are available via GitHub at https://github.com/
CHiLL-Ramshaw/manuscripts-supporting_data/tree/0292ab9b15b6
0af93341e64b759507e4e59eb7cd/2024_Single_Component_Super-
conductivity_in_UTe2_at_Ambient_Pressure (ref. 44) and from the 

corresponding author upon reasonable request. Source data are 
provided with this paper.
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Extended Data Fig. 1 | Raw Pulse-Echo Signal. The raw signal from a sputtered 
ZnO shear transducer on sample S3 with sound propagation along the [010] 
and polarization along the [100] directions. The transducer exhibits both a 

compressional (blue lines) and a shear (red dashed lines) response. These 
correspond to sound modes determined by the elastic moduli c22 and c66, 
respectively.
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Extended Data Fig. 2 | Comparison of different transducers. Shown are Δc33/c33 
for single Tc (S1, left) and two Tc (S3, right) samples. For each sample we compare 
the relative change in elastic modulus between measurements obtained with two 
different transducers. Both transducers excited sound along the [001] direction. 

However, for the data in red, the shear component of the transducer was 
polarized along [100] (additionally measuring c55), whereas for the data in blue, 
the shear component of the transducer was polarized along [010] (additionally 
measuring c44).
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Extended Data Table 1 | Pulse-echo ultrasound sample configurations

Listed are the transducer configurations for all the measurements in this manuscript. Samples are sorted by the number of superconducting phase transitions (first column). Additional 
information given is the propagation k⃗ and the polarization u⃗ of the sound pulse excited in the sample, as well as the measured elastic modulus. Also shown is the frequency at which each 
measurement is performed. We also provide the thicknesses d of the measured samples and the resulting absolute values of the elastic moduli obtained from the separation of echoes at 
room temperature. Uncertainties represent a 5% uncertainty in the thickness.
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DATA REPRODUCIBILITY

Figure 1 and Figure 2 show the relative change of elastic moduli as a function of temperature as obtained when
different echoes from a single experiment are used for the data analysis. Figure 3 and Figure 4 show the relative
change of elastic moduli for different carrier frequencies of the excited sound pulse. We find no significant dependence
on either the echoes, or the frequencies used for any of our measurements.
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FIG. 1. Echo Analysis Compressional Moduli. The relative change of compressional elastic moduli as obtained from
different echoes in a single pulse-echo ultrasound experiment. The colors indicate the echoes used for each curve. The data in
red are the data shown in the main. The left column shows data for samples with one superconducting transition, the right
column is for samples with two transitions.
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single pulse-echo ultrasound experiment. The colors indicate the echoes used for each curve. The data in red are the data shown
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NOISE ANALYSIS

Figure 5 shows the relative change of all elastic moduli also shown in the main. In order to estimate the noise of
our data, a second order polynomial has been fitted to the normal state data (highlighted by a red background in
Figure 5). In Figure 6 we show the same elastic moduli with that polynomial subtracted from the data. We then
estimate its noise as the RMS of the background-subtracted data above the transition, i.e. the same temperature
range which we used to fit said polynomial background (red shaded region). The resulting RMS values lie between
0.04 ppm and 0.41 ppm (on average less than 1.9× 10−7).
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LANDAU FREE ENERGY CALCULATIONS

Elastic moduli are the second derivative of the free energy with respect to strain, i.e. they are the strain susceptibil-
ity, in analogy with the heat capacity, which is the second derivative of the free energy with respect to temperature. If
strain couples linearly to the square of the order parameter η (just like temperature does in the term (T −Tc)η

2), the
respective elastic modulus will exhibit a discontinuity at the phase transition (just like the specific heat does). The
reason for these discontinuities is that immediately below Tc, the system has a new degree of freedom that can respond
when you apply strain (in the case of elastic moduli) or change temperature (in the case of heat capacity). This new
degree of freedom means that the response below Tc is entirely distinct from that above Tc: even though the order
parameter itself changes continuously, the system’s susceptibility to changes in the order parameter is discontinuous.

For a single-component order parameter, only compressional moduli can exhibit this discontinuity. For a two-
component order parameter, on the other hand, discontinuities in compressional moduli and certain shear moduli are
allowed. This is because for single-component order parameters, the only quantity that can respond to strain is the
magnitude of the order parameter. The bare “amplitude” of the order parameter breaks gauge symmetry and thus
cannot enter directly into the free energy or couple linearly to external parameters like strain. As the magnitude of
the order parameter is a scalar (simply a number), this means that it couples to scalar strains, i.e. compressional
moduli.

For a two component order parameter, there are two new gauge-invariant quantities that can couple to strain: the
relative phase between the components of the order parameter, and the overall “orientation” of the two components
in order-parameter space. These are new degrees of freedom that can be probed by shear strain, and thus are what
allow for discontinuities in the shear moduli at Tc.
Below, we elaborate on these concepts within the Landau theory of second-order phase transitions.

Elastic Free Energy

The elastic free energy of a solid is given by 1
2

∑
i,j εicijεj , with strain ε⃗ = {εxx, εyy, εzz, 2εyz, 2εxz, 2εxy} and

the elastic tensor c in Voigt notation. In an orthorhombic crystal environment (i.e. point group D2h), all individual
elements of the strain tensor transform as a particular irreducible representation of the point group D2h. In particular,
we can rewrite

ε⃗ = {εxx, εyy, εzz, 2εyz, 2εxz, 2εxy} = {εAg,1, εAg,2, εAg,3, εB3g, εB2g, εB1g}, (1)

where the subscript now refers to the irreducible representation. Consequently, the elastic free energy can be rewritten
as

fel =
1

2

(
cAg,1ε

2
Ag,1 + cAg,2ε

2
Ag,2 + cAg,3ε

2
Ag,3 + 2cAg,4εAg,1εAg,2 + 2cAg,5εAg,1εAg,3 + 2cAg,6εAg,2εAg,3 (2)

+cB3gε
2
B3g + cB2gε

2
B2g + cB2gε

2
B2g

)
.

Here, we have rewritten the elastic tensor according to

c =


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 =


cAg,1 cAg,4 cAg,5 0 0 0
cAg,4 cAg,2 cAg,6 0 0 0
cAg,5 cAg,6 cAg,3 0 0 0
0 0 0 cB3g 0 0
0 0 0 0 cB2g 0
0 0 0 0 0 cB1g

 . (3)

Order Parameter Free Energy and Coupling to Strain:
One-Component Order Parameter

A single-component superconducting order parameter (OP) can be parametrized as ηeiγ , with an amplitude η and
phase γ, both real. However, since the free energy needs to obey global gauge symmetry, the OP can only appear in
even powers and the phase factor eiγ becomes unobservable. Only one degree of freedom remains, the amplitude (or
superfluid density) η. The phase factor is thus dropped in the following discussion. In this case, the OP free energy
expansion to fourth order reads

fOP =
a

2
η2 +

b

4
η4, (4)
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One-Component OP B2u + iB3u

η0 =
√

−a
b

(θ0, γ0) = (π/4,±π/2)

η0 = ±
√

−2a1
b1+b3−b4

δcAg,i − g2i
2b

(η)
a1(−2a2(b1+b3−b4)g

a
i gsi +a1(−(b1+b3−b4)(g

a
i )2+4b2g

a
i gsi −(b1−b3+b4)(g

s
i )

2))

a2
1(b

2
1−4b22−(b3−b4)2)+4a1a2b2(b1+b3−b4)−a2

2(b1+b3−b4)2
(η, θ)

δcB1g 0 − g24
2b4

(γ)

δcB2g 0 0
δcB3g 0 0

TABLE I. Discontinuities in elastic moduli for different OP configurations. Magnitudes of discontinuities in elastic
moduli at Tc for one and two-component OPs, along with the particular degree of freedom that causes the discontinuity (given
in parentheses after the expression for the discontinuity). For a one-component OP, only compressional moduli cAg,i show a
discontinuity, caused by fluctuations in the order parameter amplitude η. For a B2u + iB3u two-component OP, compressional
moduli and the cB1g elastic modulus are allowed to show a discontinuity. The discontinuity in the compressional moduli is due
to fluctuations in the absolute amplitdue η of the OP, as well as fluctuations in the relative amplitude θ between individual
components. The discontinuity in cB1g, however, is caused by fluctuations of the relative phase γ between different order
parameter components.

where a = a0 (T − Tc). a0 > 0, and b are phenomenological constants, Tc is the critical temperature.

Since the OP has to appear in even powers in the free energy, the lowest possible coupling to strain is quadratic in
OP and linear in strain. Furthermore, since the OP transforms as a one-dimensional irreducible representation of D2h,
its bilinear will always transform as the Ag irreducible representation, irrespective of the particular representation.
Thus, quadratic in OP and linear in strain coupling terms are only allowed for Ag strains, and to lowest order, the
terms in the free energy coupling the OP to strain are

fcoupling =
1

2
(g1εAg,1 + g2εAg,2 + g3εAg,3) η

2. (5)

Following the formalism outlined in [1], coupling of strain to the OP leads to a discontinuity of the respective elastic
moduli at Tc according to

δcmn = −ZmZn

Y

∣∣∣∣
η→η0,εm→0

, (6)

where Zm =
∂2fcoupling

∂η∂εm
, Y = ∂2fOP

∂η2 , and η0 =
√

−a
b is the equilibrium value for the OP defined by ∂fOP /∂η = 0.

From Equation 6 it is straightforward to see that coupling terms in the free energy which are quadratic or higher
order in strain will not lead to a discontinuity of the respective elastic modulus at Tc, which justifies the truncation
of Equation 5 after terms linear in strain. Consequently, in the case of a one-component OP, no shear modulus (i.e.
cB1g, cB2g, or cB3g) is allowed to show a discontinuity at Tc (note that a discontinuity in its derivative is allowed [2]).
This is a general statement purely based on the dimensionality of the order parameter and irrespective of its particular
irreducible representation. Combining Equation 5 and Equation 6, all Ag elastic moduli exhibit a discontinuity at the
critical temperature. The magnitudes of these discontinuities based on the free energy in Equation 4 and Equation 5
are summarized in Table I.

Order Parameter Free Energy and Coupling to Strain:
Two-Component Order Parameter

Next we discuss discontinuities in the elastic moduli with a two-component OP η = {ηx, ηy}. In the D2h point
group, all irreducible representations are one dimensional. A two-component order parameter therefore has to consist
of two one-component order parameters, meaning ηx and ηy can belong to different irreducible representations and
are not related by symmetry. The example of ηx and ηy transforming as the B2u and B3u irreducible representations,
respectively, as suggested for the superconducting OP in UTe2 by authors in Hayes et al. [3] and Wei et al. [4], will be

used in the discussion below. For this particular OP, three independent bilinear combinations can be formed: |ηx|2,
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|ηy|2, and
(
ηxη

∗
y + η∗xηy

)
transforming as Ag, Ag, and B1g representations respectively. The Landau free energy reads

fOP =
a1
2

(
|ηx|2 + |ηy|2

)
+

a2
2

(
|ηx|2 − |ηy|2

)
(7)

+
b1
4

(
|ηx|4 + |ηy|4

)
+

b2
4

(
|ηx|4 − |ηy|4

)
+

b3
2
|ηx|2 |ηy|2 +

b4
4

((
ηxη

∗
y

)2
+ (η∗xηy)

2
)
,

where a1,2 = a
(0)
1,2 (T − Tc), a1,2 > 0, and bi are phenomenological constants. Based on these considerations, the free

energy coupling the OP to linear powers of strain can be written as

fcoupling =
1

2
(gs1εAg,1 + gs2εAg,2 + gs3εAg,3)

(
|ηx|2 + |ηy|2

)
+

1

2
(ga1εAg,1 + ga2εAg,2 + ga3εAg,3)]

(
|ηx|2 − |ηy|2

)
(8)

+
g4
2
εB1g

(
ηxη

∗
y + η∗xηy

)
.

Coupling of B1g strain to the second power of the OP as in the free energy above is only possible for the particular
example of a {B2u, B3u} OP. However, linear coupling of shear strain (i.e. B1g, B2g, or B3g strain in D2h) to a bilinear
of the OP is in general only possible for a two-component OP.

In order to calculate the discontinuities of elastic moduli in the presence of a two-component OP, Ghosh et al. [1]
generalized the expression in Equation 6 to

δcmn = −ZT
mY −1Zn

∣∣∣
η→η0,εm→0

, (9)

where Zm =
∂2fcoupling

∂η∂εm
and Y = ∂2fOP

∂η2 . Parametrizing the OP as η = η
{
cos θ, eiγ sin θ

}
, the derivative ∂/∂η

becomes ∂/∂ {η, θ, γ}. Assuming a chiral order parameter (θ0, γ0) = (π/4,±π/2), the equilibrium amplitude η0,

defined by ∂fOP /∂η|η0,θ0,γ0
= 0, is then given by η0 = ±

√
−2a1

b1+b3−b4
. This assumption is motivated by the observation

of time-reversal symmetry breaking (TRSB) [3, 4] in the superconducting state of UTe2. For this order parameter
configuration, one finds

Y =

a1 +
3η2

0

2 (b1 + b3 − b4) −2η0
(
a2 + b2η

2
0

)
0

−2η0
(
a2 + b2η

2
0

)
(b1 − b3 + b4) η

4
0 0

0 0
b4η

4
0

2

 , (10)

ZAg,i =

 gsi η0
−gai η

2
0

0

 , ZB1g =

 0
0

− g4η
2
0

2

 , ZB2(3)g =

0
0
0

 , (11)

where i = 1, 2, 3. From Equation 10 and Equation 11 in can be seen that for a chiral {B2u, B3u} order parameter
in a D2h point group, all compressional moduli (i.e. the elastic moduli corresponding to Ag strains) show a step
discontinuity at Tc due to coupling of the corresponding strain to the absolute amplitude of the OP (the superfluid
density), as well as the relative amplitude of the different components (this is in contrast to a multi-component OP
where the different components are related by symmetry, for which compressional strains only couple to the absolute
amplitude of the OP [1]). Among all the shear moduli, only cB1g shows a step discontinuity at Tc, due to the coupling
of B1g shear strain to the relative phase between the different components of the OP.

While the details of the above calculation depend on the exact OP parameter configuration, the main statement is
general: a multi-component OP is required for a discontinuity in any shear modulus.
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HEAT CAPACITY MEASUREMENTS

Heat capacity measurements (Figure 7) were performed in a 3He cryostat using the quasi-adiabatic method: a fixed
power was applied to the calorimeter to raise it approximately 1% over the bath temperature. The power was then
turned off to allow the calorimeter to relax back to the bath temperature. The heat capacity was extracted from
these heating and cooling data by fitting them to exponentially-saturating curves. The sample was affixed to the
calorimeter with Apiezon N grease. The background heat capacity of the grease and the calorimeter were measured
separately and subtracted from the data in Figure 7.

EHRENFEST ANALYSIS

The discontinuity observed in the compressional moduli δcii at Tc is directly related to the jump in the heat capacity
divided by temperature, ∆C/T , via Ehrenfest relations. For a single component order parameter they read

δcii = −∆C

T

(
dTc

dεii

)2

. (12)

The derivative of critical temperature with respect to compressional strain dTc/dεii can therefore be calculated by
extracting the discontinuities of the corresponding elastic modulus and the heat capacity at Tc. The heat capacity was
measured in sample S3 (see Figure 7) and the size of its discontinuity at Tc is determined to be (196±18) mJ/(molK2).
The magnitudes of the discontinuities in ∆c/c for all compressional moduli are extracted according to Figure 8 and
the values are given in Table II. Using these values, as well as the elastic moduli of UTe2 [5], the absolute values of
dTc/dεii (ii = xx, yy, zz) are calculated (see Table II).

1.50 1.55 1.60 1.65
T ( K )

150

200

250

300

350

C/
T 

( m
J/

m
ol

 K
2  

) S3

FIG. 7. Heat Capacity. Heat capacity divided by temperature as a function of temperature measured on sample S3. The
jump at Tc is (196 ± 18) mJ/(molK2), determined according to linear fits below and above the transition (red lines). The
uncertainty is estimated from the finite temperature range close to Tc in which the data deviates significantly from these fits.
This range is indicated by the blue shaded region.

The derivatives of the critical temperature with respect to stress can be calculated from the derivatives with respect
to strain via dTc/dσxx

dTc/dσyy

dTc/dσzz

 =

c11 c12 c13
c12 c22 c23
c13 c23 c33

−1 dTc/dεxx
dTc/dεyy
dTc/dεzz

 . (13)

The resulting values are given in Table II, along with values measured in uniaxial stress experiments [6]. The elastic
tensor used for this calculation is again taken from Theuss et al. [5]. Note that the analysis in Equation 13 requires
knowledge about the signs of dTc/dεii, whereas the Ehrenfest relations in Equation 12 only yield their absolute values.
For a correct analysis from our data, signs according to Girod et al. [6] were assumed.
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FIG. 8. Step Discontinuities in Compressional Moduli. Relative changes in compressional moduli across Tc (black
points). The magnitude of the step discontinuity in compressional moduli is defined as the difference between polynomial fits
to the data above and below Tc (red lines). The uncertainty is estimated from the finite temperature range close to Tc in which
the data deviates significantly from these fits (indicated in blue). Extracted values are given in Table II. The elastic moduli
shown are c11 (panel a) and c33 (panel c) for samples with one transition and c22 (panel b) and c33 (panel d) for samples with
two transitions. The inset of panel b shows the relative change in c22 close to Tc.

Elastic Modulus Step in ∆c
c

dTc
dεii

(
K

%strain

)
dTc
dσii

(
K

GPa

)
dTc
dσii

(
K

GPa

)
from [6]

c11 (1Tc) −(2.2± 0.2)× 10−5 −0.23± 0.02 −0.50± 0.03 -0.87
c22 (2Tc) −(0.13± 0.07)× 10−5 −0.07± 0.02 −0.09± 0.02 —
c33 (1Tc) −(4.4± 0.3)× 10−5 0.34± 0.02 0.60± 0.03 0.56
c33 (2Tc) −(4.7± 0.2)× 10−5 0.35± 0.02 0.62± 0.03 0.56

TABLE II. Ehrenfest Analysis. Derivatives of the critical temperature with respect to strain dTc/dε are calculated based
on the magnitudes of the discontinuities in ∆c/c extracted according to Figure 8. Values of the absolute elastic moduli and
respective uncertainties are taken from Theuss et al. [5] and the size of the specific heat jump (or more precisely ∆C/T ) is
taken to be 196 ± 18 mJ/(molK2) from Figure 7. Knowledge of the signs of dTc/dε is required for the correct calculation of
dTc/dσ. Since 12 only yields their absolute value, the signs are chosen according to uniaxial stress experiments [6]. The last
column shows a comparison to values from said uniaxial stress experiments in Girod et al. [6].
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FIG. 9. DFT Fermi Surface and Band Structure. (a) Fermi surface of UTe2 calculated with U = 2 eV. Fermi surfaces
are colored according to their orbital Te1 p, Te2 p, U d, and U f content, from left to right, respectively. Color scales are
rescaled between each plot, but respective minimum and maximum values are given to the bottom left of each panel. (b) Band
structure calculated with the same parameters as in (a). Orange circles are sized according to the orbital weight of Te1 p, Te2
p, U d, and U f (from left to right) on each individual band. (c) UTe2 Brillouin zone.

UTE2 FERMI SURFACE AND SUPERCONDUCTING GAP

Density Functional Theory

Density-functional theory calculations are used to examine the orbital character of the electronic states in the
vicinity of the chemical potential. The self-consistent field calculation is performed in the same way as in Theuss
et al. [5], by additionally considering the Hubbard U for the uranium 5f electrons. The full-potential linearized
augmented plane wave method [7] calculations employed the generalized gradient approximation [8] for the exchange
correlation, wave function and potential energy cutffs of 16 and 200 Ry, respectively, and muffin-tin sphere radii of
1.35 Å. Spin-orbit coupling was fully taken into account in the assumed nonmagnetic state. We set U = 2 eV to obtain
a quasi 2D Fermi surface [9, 10], which qualitatively accounts for the recent experiments. Along the high-symmetry
lines in the Brillouin zone (Λ, Σ, and ∆ lines, see Figure 9c) and on a dense 50×50×50 k-point mesh, the (Kramers
degenerate) band energy and wave functions are generated, and the orbital components of each doublet are calculated
within the atom-centered spheres of radius 1.35 Å. In Figure 9, the orbital components are shown on the Fermi surface
(panel a—the visualization of the Fermi surface is done with FermiSurfer [11]) and along the band dispersion (panel
b).

Tight Binding Model

Figure 9 motivates a tight binding model constructed from two quasi-one-dimensional chain Fermi surfaces: one
chain from the Te(2) 5p orbitals, and one from the U 6d orbitals. This model faithfully captures the shape of the Fermi
surface measured by quantum oscillations (see [12]). This Fermi surface is quite similar to that calculated for ThTe2,
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FIG. 10. Tight Binding Model. (a-c) Tight binding model with parameters to match DFT results. (a) Unhybridized bands
formed by uranium 6d (yellow) and tellurium (2) 5p (gray) electrons. Bands crossing the Fermi level are hybridized in (b) and
the resulting Fermi surface is shown in (c). Colors represent a projection on original U/Te(2) bands. (d) Fermi surface from
tight binding model with parameters to match quantum oscillation results [12].

which has no f electrons—while the f electrons in UTe2 hybridize strongly with both bands, the predominant effect
is to enhance the cyclotron masses and shift the chemical potential, without strongly modifying the Fermi surface
shape.

There are two uranium atoms that form a dimer in the center of the conventional unit cell shown in Figure 5a of
the main text. The dominant tight binding parameters will be the chemical potential µU, the intra-dimer overlap ∆U,
the hopping tU along the uranium chain in the a direction, the hopping t′U to other uranium in the dimer along the
chain direction, the hoppings tch,U and t′ch,U between chains in the a− b plane, and the hopping tz,U between chains
along the c axis. The two bands from the two uranium sites then come from diagonalizing the following matrix:

EU =
[

µU − 2tU cos kxa − 2tch,U cos kyb −∆U − 2t′U cos kxa − 2t′ch,U cos kyb − 4tz,Ue−ikzc/2 cos kx
a
2

cos ky
b
2

−∆U − 2t′U cos kxa − 2t′ch,U cos kyb − 4tz,Ueikzc/2 cos kx
a
2

cos ky
b
2

µU − 2tU cos kxa − 2tch,U cos kyb

]
.

(14)
There are in principle 4 Te(2) sites per conventional unit cell, but by including only nearest-neighbor hopping in the

a− b plane, the problem is again reduced to diagonalizing a 2× 2 matrix. The dominant tight binding parameters are
then the chemical potential µTe, the intra-unit-cell overlap ∆Te between the two Te(2) atoms along the chain direction,
the hopping tTe along the Te(2) chain in the b direction, the hopping tch,Te between chains in the a direction, and the
hopping tz,Te between chains along the c axis. The tight binding matrix is:

ETe =
[

µTe − 2tch,Te cos kxa −∆Te − ttee
−ikyb − 2tz,Te cos kz

c
2

cos kx
a
2

cos ky
b
2

−∆Te − ttee
ikyb − 2tz,Te cos kz

c
2

cos kx
a
2

cos ky
b
2

µTe − 2tch,Te cos kxa

]
. (15)

The resultant bands are plotted in Figure 10a. The tight binding parameters were chosen to roughly match the
DFT result shown in Figure 9 and are given in Table III. The two bands crossing the Fermi energy can be hybridized
to form the electron and hole pocket. We use an isotropic in momentum hybridization δ and chose its value to roughly
match the DFT result. The resultant two bands that cross the Fermi energy are shown in Figure 10b, and the 3D
Fermi surface is shown in Figure 10c. The predominant difference between the FS calculated with U = 2 eV and the
FS reported by Eaton et al. [12] is that the latter was chosen with the opposite-sign dispersion along the c-axis. Tight
binding parameters chosen to roughly match the FS reported in Eaton et al. [12] are also given in Table III, with the
resultant FS shown in Figure 10d.
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∆U tU t′U tch,U t′ch,U tz,U µTe ∆Te tTe tch,Te tz,Te δ
DFT 0.40 0.15 0.08 0.01 0.00 -0.03 -1.80 -1.50 -1.50 0.00 -0.05 0.09
QO 0.05 0.10 0.08 0.01 0.00 0.04 -1.80 -1.50 -1.50 -0.03 -0.5 0.10

TABLE III. All parameters given in eV.

Superconducting Gap

When considering the symmetries of superconducting gaps, it is necessary to distinguish the cases of weak and
strong spin-orbit coupling: UTe2 likely falls in the latter category. However, since the orthorhombic point group of
UTe2 (D2h) is inversion symmetric, one can still label irreducible representations as even or odd. This classification
is used to distinguish spin singlet (even) or triplet (odd) superconductors. Since UTe2 is most likely a spin-triplet
superconductor, the possible irreducible representations of the order parameter are Au, B1u, B2u, and B3u. In the
strong spin-orbit limit, they correspond to the following d⃗-vectors [13]

d⃗Au = {αkx, βky, γkz} , (16)

d⃗B1u
= {αky, βkx, γkxkykz} , (17)

d⃗B2u
= {αkz, βkxkykz, γkx} , (18)

d⃗B3u = {αkxkykz, βkz, γky} , (19)

where α, β, and γ are real constants and the momentum dependence of the superconducting gap is given by

∆
(
k⃗
)
=

√
d⃗ · d⃗⋆ ±

∣∣∣d⃗× d⃗⋆
∣∣∣. (20)

Here, d⃗⋆ is the complex conjugate of d⃗. The Au order parameter is fully gapped, whereas the B1u, B2u, and B3u order
parameters have point nodes along the kz, ky, and kx directions respectively. A B1u gap is thus also fully gapped on
the Fermi surface of UTe2 found by quantum oscillations [12, 14] and only exhibits point nodes on a putative Fermi
pocket enclosing the Γ-point [15].

The gap structures shown in the main text are calculated at kz = 0 with α = β = γ. A slight anisotropy in these
parameters can change the exact shape of the momentum dependence of the different gap symmetries, but will not
change their nodal structure.
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Normal State Elastic Moduli
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FIG. 11. Normal State Elastic Moduli. Relative changes of the normal state elastic moduli of UTe2 from about 2 K to
280 K. Compressional moduli (c11, c22, c33) and shear moduli (c44, c55, c66) are shown in the left and right panels, respectively.
The elastic moduli were measured at the following frequencies: 829 MHz (c11), 1316 MHz (c22), 1392 MHz (c33), 1392 MHz
(c44), 1436 MHz (c55), 829 MHz (c66). Our measurements of c33, c44, and c55 agree with the data previously reported by Ushida
et al. [16].
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