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Absence of a bulk signature of a charge density wave in hard x-ray measurements of UTe2
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The long-sought pair density wave (PDW) is an exotic phase of matter in which charge density wave (CDW)
order is intertwined with the amplitude or phase of coexisting, superconducting order. Originally predicted to
exist in copper-oxides, circumstantial evidence for PDW order now exists in a variety of materials. Recently,
scanning tunneling microscopy (STM) studies have reported evidence for a three-component CDW at the
surface of the heavy-fermion superconductor, UTe2, persisting below its superconducting transition temperature
[Aishwarya et al., Nature 618, 928933 (2023); Gu et al., ibid. 618, 921927 (2023); LaFleur et al., Nat. Commun.
15, 4456 (2024)]. Here, we use hard x-ray diffraction measurements on crystals of UTe2 at T = 1.9 and 12 K
to search for a bulk signature of this CDW. Using STM measurements as a constraint, we calculate the expected
locations of CDW superlattice peaks and sweep a large volume of reciprocal space in search of a signature. We
fail to find any evidence for a CDW near any of the expected superlattice positions in many Brillouin zones. We
estimate an upper bound on the CDW lattice distortion of umax � 4 × 10−3 Å. Our results suggest that the CDW
observed in STM is either purely electronic, somehow lacking a signature in the lattice, or is restricted to the
material surface.

DOI: 10.1103/PhysRevB.110.145101

I. INTRODUCTION

Strongly correlated electronic systems often exhibit com-
plex phase diagrams characterized by multiple ordered phases
in close proximity. These broken-symmetry phases often com-
pete or cooperate with one another, and exotic ground states,
including unconventional superconductivity, can emerge as
a result [1–3]. When the phases cooperate to form a single
ground state, the orders are said to be intertwined. A pair
density wave (PDW) is a canonical example of such inter-
twined order in which superconductivity intimately interacts
with charge density wave (CDW) order, resulting in a spatial
modulation of the superconducting order parameter [2,4–6].
Evidence for a PDW in real materials is mixed, the most com-
pelling case currently being the cuprates [7,8]. It is therefore
of great interest to search for evidence of PDW phases in other
materials.

Recently, superconductivity was discovered in the actinide
heavy-fermion compound UTe2 with a transition temperature
Tc as high as 2 K, and possible spin-triplet pairing [9–11].
Evidence for an exotic pairing mechanism comes from its ex-
tremely high and strongly anisotropic upper critical field [9].

Additionally, multiple reentrant superconducting phases have
been observed at high magnetic fields, termed “Lazarus super-
conductivity” [9,12], and under hydrostatic pressure [13]. The
presence of a PDW may provide insight into the nature of the
superconducting order parameter, a source of active debate in
UTe2 [9–11,14–21].

Scanning tunneling microscopy (STM) is an important
method for detecting CDWs and PDWs on the surfaces of
materials [22–24]. This method was notably used to detect a
Cooper pair CDW in Bi2Sr2CaCu2O8+δ [22]. Similar obser-
vations were recently made in UTe2: using both normal and
superconducting tips, charge order peaks were identified in
the tunneling spectra, indicating the possible existence of a
pair density wave phase below T ≈ 4.5 K [25–27]. The charge
density wave and pair density wave have coincident wave
vectors, though the PDW is shifted in phase by π [26]. While
these observations are compelling, it is important to corrobo-
rate them with a different, ideally bulk-sensitive, technique.

X-ray scattering is the quintessential method for detecting
and characterizing CDWs [28,29]. X-ray diffraction measures
the energy-integrated (i.e., “equal time”) density-density cor-
relation function of a material, giving a direct measurement
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of the charge density of the bulk, complimentary to STM,
which measures the wave-function overlap of a tip and a
surface in the presence of a local electric field. Many charge
density waves have been discovered using x-ray diffraction in
one-dimensional (1D) systems [30,31], layered chalcogenides
[32,33], and copper-oxides [7,34–36], among many others.
Here, we apply this method to investigate CDW behavior
in UTe2.

II. STM SUMMARY

UTe2 has a proclivity to cleave along the (011) surface
normal. It has an orthorhombic crystal structure (space group
Immm). The Brillouin zone of UTe2, with the (011) direction
indicated, is shown in Fig. 1(a). A representative STM im-
age of the (011) surface is shown in Fig. 1(b). The figure,
reproduced from [25], shows the Fourier transform of the
local density of states taken at the Fermi energy, EF , at T =
300 mK. Three CDW modulations are visible in the data at
incommensurate wave vectors qCDW

1 , q2
CDW, and qCDW

3 . These
modulations, described in detail in Refs. [25–27], appear be-
low T ≈ 4.5 K and possibly persist up to temperatures as high
as T ≈ 10 K. In the surface coordinates defined in Ref. [25],
which we summarize in Fig. 1(c), the CDW wave vectors have
coordinates qCDW

1 = (0.43qx, qy), qCDW
2 = (0.43qx,−qy), and

qCDW
3 = (0.57qx, 0), where qx and qy are the vector compo-

nents of a nearby Bragg peak. Here we seek to see if these
CDW modulations are present in the bulk of UTe2 through
low-temperature x-ray diffraction measurements.

III. EXPERIMENT

Experiments were done at beamline 6ID-D at the Ad-
vanced Photon Source at Argonne National Laboratory on a
sample grown under the same conditions as those in [25].
The incident x-ray energy was Ei = 100 keV (wavelength λ =
0.124 Å), at which the penetration depth in UTe2 is ∼0.6 mm,
making this a bulk measurement. Using high-energy
x-rays has proven effective in detecting purely electronic
CDWs, which occur without a significant periodic lattice
distortion [34].

The samples were encapsulated in GE varnish to reduce
exposure to air during transportation and throughout the ex-
periment. The sample was loaded into a vacuum chamber with
a transparent beryllium dome and a radiation shield held at a
base pressure ∼10−5 Torr. Sample temperature was controlled
by an ARS DE302 three-stage cryocooler in which precooled
helium gas was fed into an open-circuit Joule-Thomson stage
to reach a base temperature of T = 1.9 K. Data were collected
using a Pilatus 3 x CdTe 2M detector at T = 1.9 and 12 K.
Full, three-dimensional (3D) reciprocal space maps were per-
formed by rotating the sample in the beam by 145◦ using a
Huber four circle diffractometer.

At T = 1.9 K, the lattice parameters were found to be
a = 4.099(20) Å, b = 6.137(28) Å, and c = 14.145(64) Å.
At T = 12 K, the lattice parameters were found to be a =
4.101(20) Å, b = 6.135(28) Å, and c = 14.147(65) Å. Errors
are the result of the optimization used to determine the lattice
parameters. Deviations in lattice parameter values relative to

FIG. 1. Relationship between STM measurements and 3D re-
ciprocal space for UTe2. (a) Body-centered orthorhombic Brillouin
zone. The blue arrows indicated by b1,2,3 represent the primitive
reciprocal-lattice vectors. The black arrows represent the vectors dis-
cussed in Eqs. (1a) and (1b). (b),(c) Surface projected Brillouin zone.
(b) Zero bias STM measurement within the CDW phase (reproduced
from [25]), confirming designation of 2D projected Brillouin zone.
(c) 3D Bragg peaks projected to the [011] surface with the corre-
sponding 2D surface projected Brillouin zone. Vector components
between the q = 0 point and the relevant Bragg peak and CDW
positions according to Ref. [25]. The kl values in the 3D Miller
indices are not unique in this projection, so the labels are given as
an example.

other low-temperature reports [37] arise as a result of sample
mosaicity.

A major advantage of high-energy x-rays is that they give
access to a large volume of momentum space. Representative
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FIG. 2. T = 1.9 K measurement of reciprocal space in UTe2

crystal. (a) hk cut along l = 5 r.l.u. and (b) hl cut along k = 2
r.l.u. showing Bragg peak reflections obeying h + k + l = 2n. (c) kl
cut along noninteger h = −0.43 r.l.u. The weak signal comes from
scattering from the beryllium domes and from the tails of Bragg
peaks caused by the finite bandwidth of the x-ray source. All panels
have the same intensity scale.

2D cuts through 3D reciprocal space are shown in Fig. 2(a)
with l = 5 and 2(b) with k = 2. Sharp Bragg peaks at integer
Miller indices, (h, k, l ), illustrate the crystalline quality of the
samples. Figure 2(c) shows a scan of the kl plane taken at
noninteger h = −0.43 r.l.u. at T = 1.9 K, which shows the
primary background features: scattering from the beryllium

dome and radiation shield, and streaking from Bragg peaks
caused by the finite bandwidth of the incident x-ray beam.
These features were found to be temperature-independent
from our base temperature of T = 1.9 K to higher temperature
measurements at T = 12 K, which is above the CDW phase
transition observed in Refs. [25–27]. No sign of a CDW was
observed at any of the cuts of three-dimensional reciprocal
space in Fig. 2.

IV. CALCULATION OF CDW POSITIONS

We will now focus on the regions of reciprocal space where
the CDW is expected to be visible, based on what is known
from the STM measurements of Refs. [25–27]. Because STM
is a surface measurement, it does not constrain the periodicity
of the CDW in the direction perpendicular to the surface.
However, we can use the STM results to place partial con-
straints on the Miller indices, and identify what regions of
momentum space the CDW is expected to be visible, assum-
ing that the wave vectors at the surface are the same as in the
bulk.

As noted before, all measurements of the CDW in STM
are on the cleaved (011) surface. In sample coordinates, the
unit vector normal to this surface ẑ = −→z/|z| = (0,c,b)/

√
b2+c2.

The two vectors orthonormal to ẑ, which define the coordinate
system of the surface, are

x̂ = (1, 0, 0), (1a)

ŷ = ẑ × x̂, (1b)

where x̂ is defined to coincide with the (h, k, l ) = (1, 0, 0)
crystallographic direction.

The peaks observed in an STM measurement [e.g.,
Fig. 1(b)] are projections of the bulk 3D Bragg peaks, which
are indexed by Miller indices (h, k, l ), onto to the (x, y) plane
defined by Eqs. (1a) and (1b). The projection is given by the
two-component vector

q2D = (x̂ · q3D, ŷ · q3D), (2)

where q3D = (h 2π
a , k 2π

b , l 2π
c ). The locations of these pro-

jected points, and the associated 2D Brillouin zone of the
surface, are shown in Fig. 1(c) and are consistent with STM
data in Fig. 1(b). (Note that we have included only peaks
with h + k + l = 2n, where n is an integer, the others being
forbidden by crystal symmetry.) In terms of the surface basis
vectors Eq. (1), the CDW modulations observed in Ref. [25]
are qCDW

1 = (0.43 2π
a , 2π√

b2+c2 ), qCDW
2 = (0.43 2π

a , −2π√
b2+c2 ), and

qCDW
3 = (0.57 2π

a , 0).
The 3D positions of each of the three CDW modulations,

qCDW
i , such as can be constrained by a 2D STM measurement,

are determined by equating

q2D = qCDW
i . (3)

Doing so, we find that the STM experiment fully constrains
the h components of each of the three CDWs, i.e.,

hCDW
1 = 0.43 r.l.u., (4a)

hCDW
2 = 0.43 r.l.u., (4b)

hCDW
3 = 0.57 r.l.u. . (4c)
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FIG. 3. Diffraction images taken below and above the CDW transition temperatures in the k, l plane at the appropriate h values. The red
line represents the calculated CDW positions in this zone for (a) qCDW

1 , (b) qCDW
2 , and (c) qCDW

3 at T = 1.9 K. To compare, the calculated
positions of (d) qCDW

1 , (e) qCDW
2 , and (f) qCDW

3 at T = 12 K, above the CDW transition temperature, are also shown. Streaks in (a) and (d) come
from the finite bandwidth of the incident x-ray beam. Rings in (b), (c), (e), and (f) come from scattering from amorphous beryllium of the
sample enclosure. All images have the same intensity scale.

The k and l components cannot be determined independently,
but Eq. (3) establishes a relationship between them:

kCDW
1 = lCDW

1 − 1 r.l.u., (5a)

kCDW
2 = lCDW

2 + 1 r.l.u., (5b)

kCDW
3 = lCDW

3 . (5c)

Note that, unlike Eq. (4), Eq. (5) contain only natural numbers.
This suggests, though it is not proof, that the incommensurate
character of the CDW in UTe2 occurs only in the (1,0,0)
reciprocal-lattice direction.

Combining Eqs. (4) and (5), we find the expected locations
of the three CDW wave vectors in UTe2 derived from STM
measurements to be qCDW

1 = (0.43, lCDW
1 − 1, lCDW

1 ), qCDW
2 =

(0.43, lCDW
2 + 1, lCDW

2 ), and qCDW
3 = (0.57, lCDW

3 , lCDW
3 ),

where the values of lCDW
i are unknown. These expressions

constrain the locations of the CDWs to one-dimensional cuts
through 3D reciprocal space. Note that these vectors are
defined relative to any crystalline Bragg peak, implying a
large number of symmetry-related CDW satellites that could
potentially be visible in any Brillouin zone.

Note that, as far as zero-field measurements are concerned,
all three of these modulations can be expressed in terms of a
single wave vector, qi

3D, with the CDW being visible in dif-
ferent Brillouin zones with the wave vector given by QCDW =
G3D + qi

3D, with G3D being a reciprocal-lattice vector. These

different momentum-space points only become inequivalent
in an applied magnetic field [25].

V. RESULTS

The wide reciprocal space cut shown in Fig. 2(c), done at
fixed h = −0.43, should intersect the qCDW

1 and qCDW
2 posi-

tions from the h = 0 zone as well as the qCDW
3 position from

the h = −1 zone. However, no CDW signal is observed above
the experimental background at any of the three expected
locations.

With hopes of uncovering a more subtle effect, we per-
formed temperature difference measurements, comparing the
same regions of reciprocal space at T = 1.9 and 12 K, the
latter being above the putative CDW ordering temperature
[25–27]. We focused on three Brillouin zones near (−1, 1, 5),
(−1, 3, 5), and (−1, 2, 5) shown in Fig. 3. These data sets
were integrated over a narrow range of h indicated in square
brackets in each panel. The red lines indicate the possible
CDW locations constrained from Eqs. (4) and (5) in each
region. No changes with temperature were observed in any
of these three Brillouin zones, or any of the other Brillouin
zones mapped in Fig. 2.

Lacking a clear signature of a CDW, we can nevertheless
use our data to restrict the maximum CDW amplitude in
UTe2. The background level of our measurements places
an upper limit on the CDW peak intensity. The majority
of the background comes from the beryllium rings (clearly
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FIG. 4. Scan through (−1, 2, 5) Bragg peak at T = 1.9 K in the
(a) hk plane and (b) hl plane. Both plots are integrated ±0.05 r.l.u.
in the out-of-plane direction. Line cut through Bragg peak along the
(c) h, (d) k, and (e) l directions.

visible in the hk plane and line cuts), whose average photon
counting intensity is ∼10 Hz in this reciprocal space region.
Assuming the photon noise is Poisson-distributed, this
places an upper bound on the maximum CDW intensity of
Imax
CDW �

√
10 ≈ 3 Hz.

How this intensity translates into a bound on the CDW
amplitude depends on the CDW correlation length. In the
STM data, the CDW peaks are of similar width to the crys-
talline Bragg peaks [Fig. 1(b)] whose width, in turn, is limited
by the field of view of the STM image. The CDW width
may also be field-of-view limited, or it may be inherently
that broad. We therefore consider two cases: (i) The intrinsic
width of the CDW is as observed in the STM measurements,
and (ii) the CDW has the same width as the structural Bragg
peaks observed in our x-ray measurements. The latter case is
summarized in Fig. 4.

The square of the amplitude of the CDW is proportional to
the integrated intensity of the CDW reflection, which can be
estimated,

I integrated
CDW � 1

2

(
Imax
CDW

)
( fCDW)3, (6)

where f 3
CDW is the three-dimensional width of the CDW in

reciprocal space. In the case where the CDW width is taken
to be the same as in STM measurements, f 3

CDW = (ξ−1
STM)3,

where ξ−1
STM is the full width at half-maximum of the CDW

peak in STM, measured along the qx direction in Fig. 1(b),
which we have assumed to be isotropic. In the other case,
f 3
CDW = (δhδkδl ), where δh,k,l represent the widths of the

nearest Bragg peak in the three orthogonal reciprocal space
directions, shown in Figs. 4(c)–4(e).

Figures 4(a) and 4(b) show cuts through the (−1, 2, 5)
Bragg peak. Panels (c)–(e) show line cuts through the maxima
in the h, k, and l , respectively. The peak has a maximum inten-
sity of 1.74 × 106 Hz and widths in the h, k, and l directions
of 0.043, 0.032, and 0.050 Å−1, respectively. The integrated

intensity of this Bragg peak can then be approximated in the
same way as the CDW peak shown in Eq. (6), I integrated

Bragg =
1
2 (Imax

Bragg)(δhδkδl ), where δh,k,l are the measured widths along
the crystallographic directions. Using this number, we can
place an upper limit on the amplitude charge density of
the CDW,

ρ2
CDW

ρ2
(−1,2,5)

� I integrated
CDW

I integrated
Bragg

, (7)

where ρ(−1,2,5) is the calculated structure factor of the
(−1, 2, 5) Bragg peak and ρCDW is the charge amplitude of
the CDW. The structure factor of the (−1, 2, 5) Bragg peak
is calculated to be ρ(−1,2,5) = 169.38 e−/vcell, where vcell is
the volume of the standard orthorhombic unit cell. Comparing
this to the amplitude of the charge density of the CDW gives
ρCDW � 2.13 e−/vcell in the case in which the CDWs have the
same width as in STM measurements or ρCDW � 0.70 e−/vcell

in the case in which the CDWs have the same width as the
(−1, 2, 5) Bragg peak.

VI. CONCLUSIONS

Our study indicates that UTe2 does not exhibit a bulk
CDW of the sort that occurs in many other transition-metal
dichalcogenides, such as NbSe2 or TaS2 [38], which ex-
hibit pronounced CDW signatures in both STM and x-ray
measurements [32,39]. Note that, while we have used STM
measurements as a guide for where to look in reciprocal space,
we performed a 3D momentum sweep covering >20 Brillouin
zones, and we would have observed the CDW even if its wave
vector deviated from what was observed in STM.

How to interpret the upper bound on the amplitude, ρCDW,
depends on whether one assumes the CDW is electronic (the
scattering arising purely from a valence modulation) or struc-
tural (the scattering arising from a periodic distortion to the
crystalline lattice).

Assuming the CDW is purely structural, the magnitude
of the lattice displacement should be of order umax/a ∼
ρCDW/ρtot, where ρtot represents the total charge density [38].
Assuming the order is long-ranged (see Sec. V), the ampli-
tude bound ρCDW � 0.70 e−/vcell translates into an atomic
displacement umax/a � 8.93 × 10−4, where a is the lattice
parameter of UTe2. Alternatively, if we now consider the
case in which the CDW has a short correlation length, the
atomic displacement would be umax/a � 2.72 × 10−3. Both
of these numbers are markedly lower than the atomic displace-
ments in other dichalcogenide CDWs, which have distortions
umax/a ranging from 1% to 7% [38]. We conclude that
whatever CDW was observed in STM experiments in UTe2

has a completely different character from CDWs in other
dichalcogenides.

We can also consider the case in which the CDW is as-
sumed to be purely electronic, meaning the atoms do not shift
from their equilibrium positions, and the CDW is dominated
by a modulation in the valence electron density [34,40,41]. In
this case, our x-ray measurements allow for an amplitude of
up to ∼2 e− per unit cell. This would represent a significant
fraction of the valence band [13,42,43]. Such an amplitude
might be comparable to the effect seen in STM, though it
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would be difficult to reconcile with the absence of a resistive
transition in bulk transport measurements in this range of
temperatures [11,44,45]. We cannot, however, completely rule
out this possibility.

A final explanation is that the CDW observed in STM
measurements is restricted to the surface of UTe2. This would
explain why its presence is so robust in multiple STM mea-
surements [25–27] and absent in transport measurements
and the bulk-sensitive x-ray measurements presented here.
This scenario would be reminiscent of the CDW seen in
STM measurements of NaxCa2−xCuO2Cl2 [46]. Such a CDW
transition can be explained through the framework of ex-
traordinary phase transitions, in which the critical behavior
is different at the surface compared to in the bulk of ma-
terial [47,48]. As a result, the transition temperature of the
surface can be higher than that of the bulk. This allows
for the possibility that the CDW in UTe2 could be of ei-
ther electronic or structural origin at the surface, with the
absence of a bulk signature in x-ray and transport measure-
ments being a consequence of the small volume fraction
of the effect. In this scenario, one might expect different
surface terminations to lead to different surface ordering
effects.

Note added. We would like to note that two other re-
ports of experimental investigations of a resonant hard
x-ray diffraction experiment [49] and of ultrasound mea-
surements [50] of UTe2 at low temperature were re-
ported simultaneously with this work. All measurements,

performed independently and on samples grown by more
than one group, arrive at the same conclusions reported
here.
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