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The superconducting state of the heavy-fermion metal UTe2 has attracted considerable interest because
of evidence of spin-triplet Cooper pairing and nontrivial topology. Progress on these questions requires
identifying the presence or absence of nodes in the superconducting gap function and their dimension. In
this article, we report a comprehensive study of the influence of disorder on the thermal transport in the
superconducting state of UTe2. Through detailed measurements of the magnetic-field dependence of the
thermal conductivity in the zero-temperature limit, we obtain clear evidence of the presence of point nodes
in the superconducting gap for all samples with transition temperatures ranging from 1.6 to 2.1 K obtained
by different synthesis methods, including a refined self-flux method. This robustness implies the presence
of symmetry-imposed nodes throughout the range studied, further confirmed via disorder-dependent
calculations of the thermal transport in a model with a single pair of nodes. In addition to capturing the
temperature dependence of the thermal conductivity up to Tc, this model provides some information about
the locations of the nodes, suggesting a B1u or B2u symmetry for the superconducting order parameter.
Additionally, comparing the new, ultrahigh conductivity samples to older samples reveals a crossover
between a low-field and a high-field regime at a single value of the magnetic field in all samples. In the
high-field regime, the thermal conductivity at different disorder levels differs from each other by a simple
offset, suggesting that some simple principle determines the physics of the mixed state, a fact which may
illuminate trends observed in other clean nodal superconductors.
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I. INTRODUCTION

Ever since the discovery of equal-spin pairing in super-
fluid 3He-A, there has been a search for an analogous equal-
spin paired state in a superconductor [1]. This search was
given new impetus by the realization that a triplet super-
conductor could host Majorana zero modes that would
enable fault-tolerant quantum computation [2]. The dis-
covery of superconductivity in uranium ditelluride (UTe2)
was a watershed moment for the field because the super-
conducting state immediately showed two clear indications
of triplet pairing. The first was that the upper critical field

Hc2 exceeds the Pauli limit for all orientations. The second
was that the nuclear-magnetic-resonance (NMR) Knight
shift, which is a measure of the local spin susceptibility in
the superconducting state, shows almost no change through
the superconducting transition temperature Tc [3,4]. Both
of these phenomena are hard to obtain unless the electron
spins are aligned in the superconducting state.
These observations triggered extensive efforts to char-

acterize the orbital part of the order parameter. Early
measurements of the thermal conductivity and penetration
depth pointed to a superconducting gap function with point
nodes [5]. Comparison of the penetration depth in different
directions favored a multicomponent gap structure with
nodes away from the high-symmetry axes, an observation
that made sense in the context of magneto-optic Kerr
rotation measurements that indicated that the superconduct-
ing order parameter broke time-reversal symmetry [6,7].
In parallel, progress on the synthesis of UTe2 yielded

samples with notably higher Tc values (up to 2 K compared
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to 1.6 K) and significantly reduced residual resistivity
[ρð0KÞ] values, indicating significantly reduced levels of
disorder [8,9]. Although the Hc2 values of these samples
also exceed the Pauli limit, they differ in several other
respects from the first-generation samples. In particular, the
evidence for time-reversal-symmetry breaking did not
reproduce [10], and the NMR Knight shift change through
Tc was observed to occur in all crystallographic directions
[11]. These observations have been interpreted to favor a
single-component order parameter, and in some cases a
nodeless gap function [11,12], which in turn suggests that
key features of the superconducting state were inaccessible
in the older generation of samples.
Here we use measurements of the thermal conductivity κ

to investigate this possible disorder-dependent evolution of
the superconducting state in UTe2. We study both the finite-
and zero-temperature limits in samples that vary by a factor
of approximately 20 in residual resistivity and approximately
30% in Tc. Throughout this range of sample quality, we are
able to confirm the presence of point nodes. This conclusion
rests on two qualitative features in the data: the absence of a
nonzero intercept in κ=T at zero temperature, which rules out
line nodes, and an immediate increase in this intercept with
the application of magnetic field, which rules out a full gap.
Our wide range of disorder levels allows us to confirm this
nodal structure by performing calculations of κ=T in a
simple model of an axial p-wave state as functions of both
the temperature and magnetic field, assuming scattering of
elastic and inelastic processes. The calculations are success-
ful at capturing the evolution of the peak below Tc with
increasing disorder. They also show quantitatively different
behavior when the nodes are chosen to be in the direction of
the heat current (the crystal a axis for these experiments) or
perpendicular to it. These differences, particularly the size of
the peak below Tc in the cleanest sample and the rate at
which κðT → 0Þ=T grows with disorder, suggest that the
point nodes in UTe2 are away from the crystal a axis,
although this conclusion is significantly less strong than the
general conclusion in favor of point nodes because it
depends on the quantitative inputs of a relatively simple
model. The best current picture of the Fermi surface in UTe2
is that is consists solely of quasi-2D sheets that extend along
the kz direction. If this is correct, then our data, together with
current evidence in favor of a single-component order
parameter, imply the that the order parameter of UTe2
belongs to the B2u irreducible representation of the crystal
point group. If, on the other hand, there is some component
of the Fermi surface that crosses the z axis, then an order
parameter belonging to the B1u irreducible representation is
also consistent with our data. Finally, the field dependence of
thermal transport in the zero-temperature limit κðH; T →
0Þ=T exhibits a crossover near 1 T to a regime where it
grows at a uniform rate independent of the level of disorder,
suggesting a universal behavior in the mixed state that is
reminiscent of other ultraclean nodal superconductors.

II. RESULTS AND DISCUSSION

Data are presented on four single-crystal samples of
UTe2 with varying Tc values and normal-state scattering
rates as deduced from their residual resistivity ratios
[RRR ¼ ρð300 KÞ=ρð0 KÞ]. Sample S1 (Tc ¼ 1.6 K,
RRR ¼ 30) grown by the chemical-vapor-transport
(CVT) method and whose thermal conductivity was pre-
viously reported [5], is compared to sample S2
(Tc ¼ 1.8 K, RRR ¼ 50) grown by CVT at lower temper-
atures (950 and 860C°), and samples S3 (Tc ¼ 2.1 K,
RRR ¼ 600) and S4 (Tc ¼ 2.1 K, RRR ¼ 100) grown by a
novel tellurium flux method described in Appendix A.
Electrical and thermal transport of samples S1–S3 are

presented in Fig. 1 plotted as the total measured thermal
conductivity κ=TðTÞ and the electron contribution L0=ρðTÞ
for each sample estimated from the Wiedemann-Franz law
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FIG. 1. Variation of the a-axis thermal conductivity of UTe2
with disorder. The measured thermal conductivity of three
samples of UTe2 with varying RRRs of 30 (S1, green), 50
(S2, blue), and 600 (S3, purple) and superconducting transition
temperatures of 1.6 (S1), 1.8 (S2), and 2.1 K (S3) are presented as
a function of the temperature. The overall shape of the curves is
similar for all three samples, but with noticeably stronger peaks
below Tc in the higher RRR samples. The estimated electron
contribution to the total thermal conductivity estimated by the
Weidemann-Franz law [L0=ρðTÞ] is shown for each sample as a
thin line. The inset shows the measured thermal conductivity data
below 0.5 K, with clear limiting behavior approaching κ=T → 0
as T → 0 for all samples. The inset shows the very low-temper-
ature portion of the data. The dashed line shows the estimated
minimum κ=T for a line-node gap structure in UTe2 (see main
text for details).
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κ=T ¼ L0=σ (all for currents directed along the crystallo-
graphic a axis). In the normal state, all three samples show
qualitatively similar behavior as a function of the temper-
ature, albeit with larger absolute values of κ=T in the
samples with lower residual resistivities. Below Tc, all three
samples exhibit a significant increase in κ=T that peaks near
approximately 1 K but with a peak magnitude that varies
considerably among the samples, being the most pro-
nounced in S3 followed by smaller magnitudes for S2
and S1, respectively. The magnitude of this enhancement
varies inversely with the residual resistivity of each sample,
also reflected in the RRR values (RRR ¼ 30, 50, and 600
for samples S1, S2, and S3 respectively). As explained
below (see Sec. III), this behavior is qualitatively consistent
with that of many unconventional superconductors, which
frequently exhibit such enhancements in κ=T below the
superconducting transition that scale inversely with the
elastic scattering rate.
As discussed below, the enhanced thermal conductivity

below Tc can be naturally explained using model calcu-
lations that vary the electron scattering rate, but these
models also require a mixture of electron and phonon
contributions. To start, we focus on the most reliable
method of measuring the electronic response due to the
superconducting gap structure, which is to study the
evolution of the zero-temperature extrapolation of κ=T
with magnetic field. In this limit, phonons necessarily
vanish and the behavior of the extrapolated value κðT →
0; HÞ=T can reflect only the properties of the supercon-
ducting state. In this regime, the change of the thermal
conductivity under a small magnetic field is dominated by a
shift in the quasiparticle spectrum that is induced by the
presence of the supercurrent associated with vortices [13].
If the quasiparticle spectrum has a gap, then a nonzero
magnetic field is required before κ=T exhibits any increase.
In contrast, if there are nodes in the spectrum, then at
arbitrarily small fields the density of states will be enhanced
and κ=T will increase continuously from zero field. This
effect has been used to diagnose the presence of nodes in
the gap structure of many superconductors [13], including
in the earliest work on UTe2 [5].
Figure 2 presents the temperature and magnetic-field de-

pendences of the fermionic thermal conductivity κðT;HÞ=T
for samples S2–S4 plotted as a function of the temperature
for various fixed fields [κðT;HÞ=T, Figs. 2(a)–2(c)], as
well as a function of field in the T → 0 limit [κ0ðHÞ=T,
Figs. 2(d)–2(f)]. In all of these measurements, the magnetic
field was applied in the longitudinal configuration, with field
parallel to both the heat current and the crystallographic a
axis. The overall shape of κðT;HÞ=T is qualitatively similar
for all samples, with a rapid increase with the temperature
that is mildly dependent on magnetic-field strength at low
fields, but with a residual T → 0 intercept κ0=T that exhibits
a strong field dependence. As shown in Figs. 2(d)–2(f), κ0=T
undergoes an initial rapid rise as the field is increased from

zero, followed by an intermediate field regimewhere it grows
more slowly. Once the magnetic field is increased to nearly
Hc2, κ0=T rises rapidly to the normal-state value. We study
the low-field regime most fully in the highest RRR sample,
S3, where data taken down to 30 mK for six magnetic fields
up to 0.5 T provide the most robust T → 0 extrapolations
[Fig. 2(c)]. κðTÞ=T exhibits a clear, rigid upshift with
increasing fields starting as low as 50 mT. We emphasize
that this rise at low fields is readily visible in our raw data at
the lowest temperatures and is therefore not sensitive to the
details of theT → 0 extrapolation. The one other comparable
study of high-qualityUTe2 samples didnot observe this rapid
rise, but that study did not measure below 100 mK where
κðTÞ=T develops substantial curvature and did not measure
an ultrahigh-quality sample (RRR > 500, comparable to our
sample S3) with field along the crystallographic a axis,
where the rapid rise is obvious at higher temperatures [12].
The idea that this low-field rise is coming from a

Doppler-shifted density of states is consistent with the
variation in the magnitude of this effect in these samples.
To factor out changes coming from variation in the mean
free path of the different samples, we can use the zero-
temperature value of κ=T in the normal state above Hc2. In
the normal state, all of these samples should have the same
carrier density, so changes in κ0=T should scale with the
mean free path. In Fig. 2(e), we plot κðT → 0; HÞ=κðT →
0; Hc2Þ as a function of the normalized magnetic field
H=Hc2. All four samples show a comparable slope,
suggesting that they have a common density of states that
is being tuned by the magnetic field.
Further support for the Doppler-shift interpretation

comes from the fact that κ=T rises immediately starting
at zero field. There are various scenarios in which a fully
gapped superconductor can exhibit a small rise in κ=T at
magnetic-field values well below Hc2, including the pres-
ence of very deep gap minima and multigap scenarios.
However, in any scenario with a full gap, there will be a
finite field range within which κ=T is approximately zero,
with the rise in κ=T accelerating only as the magnetic field
overcomes the minimum of the gap, leading to a concave
up shape for κ0ðHÞ=T. By contrast, the extrapolated value
of κðT;HÞ=T grows most quickly near zero field for all of
our samples. One would therefore have to assume a
dramatic gap anisotropy of more than 10 to explain the
rapid rise we observe (Δ1=Δ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H�=Hc2

p
where H� is the

field where activation begins, approximately 50 mT in our
data) [14]. Thus, it appears that a nodal gap structure is by
far the more likely explanation.
Having concluded that UTe2 poses nodes, the next

question is whether these are point nodes or line nodes.
There is a well-known theoretical result that in a super-
conductor with line nodes the residual value of κ=T in the
zero-temperature limit is bounded from below [15]. This
has been found to be the case empirically in several line-
node superconductors including KFe2As2 and YBCO [16].
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This universal residual term is given by κ0=T ¼
1
3
γ0v2fðaℏ=2μΔ0Þ [15]. Using the best estimates from the

literature for 2Δ0 ¼ 3.5kBT, γ0 ¼ 125 mJ=molK2, μ ¼ 2,
and vf ¼ 10 000 m=s, this yields a residual term of about
0.25 mW=K2 cm [3,17]. As shown in the Fig. 1 inset,
the zero-field, ultralow-temperature behavior of κ=T
for samples S1–S3 clearly extrapolates to well below
0.25 mW=K2 cm at T ¼ 0, violating the minimum value
expected for a line-node superconductor. Together with the
evidence of a rapid rise in κ0=T at low fields, this provides
conclusive evidence of symmetry-imposed point nodes in
the gap structure of UTe2. This is consistent with con-
clusions from nearly all thermodynamic experiments to
date, including specific heat [3,8,18], penetration depth
[5,6], and NMR [19,20], and, together with the theoretical
analysis presented below, point to a gap structure consistent

with point nodes lying away from the crystallographic a
axis. Since the present data show that the thermal conduc-
tivity of UTe2 is in fact consistent with a nodal gap
structure, this leaves only the most recent NMR study as
favoring a full gap.
Finally, we identify some intriguing universal behavior

of κ0ðHÞ=T in the intermediate-field regime. As discussed
above and shown in Figs. 2(e) and 2(f), the higher RRR
samples show a more rapid rise in κ=T with applied
magnetic field. However, this trend is confined to a region
below 1 T. At higher fields, the unnormalized κðT →
0; HÞ=T grows at a nearly uniform rate in all samples,
despite the factor of approximately 20 difference in their
residual resistivities. As the disorder is reduced, the
conductivity is simply increased by a fixed amount inde-
pendent of field. Generically, the physics of the mixed state
is expected to be quite complicated since it involves
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FIG. 2. Magnetic field dependence of thermal transport in the superconducting state on UTe2. Data are presented for four comparative
samples with varying Tc and RRR values as indicated. For all samples, both heat current and magnetic field are oriented along the crystal
a axis. Panels (a)–(c) present the magnetic-field evolution of κðTÞ=T at low temperatures for the new samples measured in this study.
Qualitatively similar behavior is observed in all samples, with zero-field data trending clearly toward zero conductivity values as T → 0
for all samples, and rapid increases of the extrapolated value with increasing magnetic fields. The extrapolated T → 0 values for each
curve are plotted as a function of the magnetic field H in panels (d)–(f). Panel (d) plots the full field range up to the upper critical field
Hc2, with data normalized to their normal state value above Hc2 and plotted against normalized field H=Hc2, showing the apparent
depression of conductivity with increasing RRR value of sample. Panel (e) presents the same normalized data as panel (a) but enlarged to
the very low- field range where the universal rapid initial rise is evident. Panel (f) presents the same data but plotted as a function of the
absolute conductivity and magnetic-field values, demonstrating the enhancement of absolute conductivity with increasing RRR and Tc
values, but also the remarkably consistent rate of growth above 1-T fields as discussed in the text. The inset to panel (f) shows a field
sweep of sample S3 at 50 mK, demonstrating that the peak shown in the zero-temperature extrapolation is not an artifact.
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quasiparticle dynamics in the inhomogeneous medium of a
vortex lattice, as well as the dynamics of the vortices
themselves. The fact that disorder influences this regime in
an extremely simple way in UTe2 strongly suggests that
there is a simple principle or physical picture that deter-
mines κ=T in this regime. This potentially opens up the
mixed state to more thorough theoretical treatment than has
been attempted previously.
The most important observation to be made about the

data in this regime is that this simple pattern exists in
κðT → 0; HÞ=T as a function of the disorder. However, we
offer a few thoughts about what it might imply for the
physics of the mixed state. First of all, this separation—
between an overall conductivity scale that is sensitive to
disorder, and a field dependence that is not—is suggestive
of parallel conductivity channels. At the low-field end of
this regime, our samples exhibit a wide range of κ=T values
(approximately 100, 200, 250, and 400 μW=K2 cm), but
the slope of dκ=dH is basically constant. If the heat were
carried by a single type of heat carrier, it would be very odd
for the slope dκ=dH to not notice this substantial enhance-
ment of the underlying conductivity. On the other hand, this
separation between the scale of κ=T and its slope dκ=dH is
completely natural if the heat conduction in this regime
were segregated into two parallel, mostly noninteracting
conduction channels, only one of which is sensitive to
disorder and the other of which is sensitive to magnetic
field, but not vice versa. It is tempting to ascribe this
additional conduction to a second band when a field energy
greater than a small gap is achieved, although we have no
direct evidence of this. Clearly, it would not be trivial to
make sense of such a “two-channel” scenario physically,
especially since neither channel could simply be equated to
the Doppler-shifted quasiparticles that we observe at low
fields. If one of the channelswere to be so identified, then the
thermal conductivity would grow at a faster rate than it does
at low fields. However, a clean separation of the heat
conduction into two parallel channels would provide a
simple explanation of this striking pattern. Second, the fact
that the boundary between these two regimes lies at the same
value of themagnetic field in all samples suggests that this is
not a vortex-lattice transition. Such a transition should
depend on the density of pinning sites and therefore is
expected to be disorder dependent. Third, a fixed field scale
translates to a specific vortex density, so it seems likely that
this high-field regime is defined by some length scale in the
system becoming comparable to the intervortex distance.
One consequence of this disorder independence of the

rise of conductivity with field is that the shape of κ0ðHÞ=T
is flatter in cleaner samples when plotted as a fraction of the
normal-state thermal conductivity [e.g., Fig. 2(d)]. This
trend has been noted in several very clean unconventional
superconductors such as KFe2As2 and YBCO [16]. To the
best of our knowledge, none of the datasets on these
materials presents a wide enough array of disorder values to
thoroughly test whether there is a disorder-independent

growth rate for κðHÞ=T in any of these materials. If it is the
case that any of these other clean nodal superconductors
show behavior similar to a function of disorder, it would
create a basis for understanding the mixed state that is
independent of the details of pairing. This creates a
powerful motivation for more thorough studies of the
mixed state in other clean nodal superconductors.
Finally, there is the striking observation that for sample

S3, which has the highest RRR value, κðT → 0; HÞ=T
actually reaches a maximum at 0.5 T before decreasing and
settling into a smooth rise in the intermediate-field regime.
While it may be tempting to interpret this local maximum
as an indication that some distinctive physics is present
around 0.5 T, such as a phase transition, the more likely
interpretation is probably that this peak is a consequence of
the crossover from the low-field regime dominated by the
Doppler shift of the quasiparticle spectrum to the inter-
mediate-field regime which is dominated by some other
physics. All of our samples exhibit a crossover at this
absolute field scale, so it is reasonable that in the highest
RRR sample, κ0ðHÞ=T grows fast enough that it overshoots
the value that it will ultimately settle into in the universal
mixed regime above 1 T.

III. THEORETICAL ANALYSIS

Here we validate the point node picture quantitatively
with a model calculation of the temperature dependence of
κ=T. The theory of thermal conductivity in triplet super-
conductors is very similar to that for singlet superconduc-
tors [21,22], provided the triplet order parameter matrix is
unitary. Most of the commonly studied triplet states,
including the 3He-A phase, are in this class. In that case,
the familiar quasiparticle energies Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk

2 þ jdðkÞj2
p

enter the thermal current response, and the same expres-
sions can be used for triplet superconductors [23–25]. In
the case of nonunitary states, additional terms involving
q≡ idðkÞ × d�ðkÞ occur in both the quasiparticle energies
and in the weights of two-particle processes [26]. In the
nonunitary case, the zeros of jdðkÞj2 differ from those of
the zeros of Ek even on the Fermi surface ξk ¼ 0 (“spectral
nodes”). Indeed, it was proposed by Ishihara et al. [6] that
in UTe2, complex linear combinations of 1D irreducible
representations could support spectral nodes pointing in
generic directions in the orthorhombic Brillouin zone,
explaining early experiments indicating time-reversal-sym-
metry breaking [7]. By contrast, order parameters corre-
sponding to a single 1D irreducible representation are
necessarily real, with nodes aligned along high-symmetry
axes. Previous work measured the penetration depth for
currents running along different directions, and concluded
from the universal δλðTÞ ∼ T2 behavior that nodes were
located at generic positions in the Brillouin zone, requiring
nonunitary states [6].
Thermal conductivity is complex to analyze due to the

fact that thermal currents can be carried by both electrons
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and phonons, each of which can scatter from multiple
physical sources. In cuprates, it was shown that electronic
conductivity limited by disorder was dominant at low
temperatures, while a combination of inelastic electron-
electron scattering and phonon-electron scattering domi-
nated the intermediate- and high-temperature regimes [27].
Intriguingly, the thermal conductivity of sample S1 [5] is
unexpectedly relatively isotropic, at least in the context of a
system with point nodes along a single high-symmetry axis.
This could reflect a distribution of nodes away from high-
symmetry directions, as suggested inRef. [6], or a larger than
expected phonon contribution.We note, for instance, that the
low-temperature thermal conductivity of samples S1–S3 is
not strikingly different as shown in Fig. 1 (inset), suggesting
that phonon conduction is not negligible. Theoretically,
calculated values of electronic κ=T are too small at low T
and fall systematically below the data, providing further
support for this conclusion.
We assume the standard Bardeen-Rickayzen-Tewordt

theory of phonon thermal conductivity [28,29] with the
phonon mean free path limited by defects. For simplicity,
we ask initially what information can be gleaned from the
qualitative features of the temperature and field dependence
of the measured thermal conductivity along the a-axis
direction only. The enhancement of the electronic mean
free path below Tc due to the collapse of inelastic
scattering, followed by a saturation of the mean free path
due to disorder, led in the cuprates to a peak in κel that was
very sensitive to disorder. This behavior is similar to that
observed in Fig. 1 for our UTe2 samples, so we attempt a
similar analysis here, with phonon contributions κph and
inelastic scattering due to electronic interactions 1=τinel that
by assumption do not depend on pair-breaking disorder.
The electronic part κel is calculated assuming independent
elastic and inelastic contributions 1=τ ¼ 1=τel þ 1=τinel,
and added to the phonon contribution. The model and
parameters used are described in the Appendix.
In Fig. 3, we show the theoretical thermal conductivity

κðTÞ=T calculated with these assumptions in an axial state
dðkÞ ¼ ðkx þ ikyÞŷ ∝ sin θ, with θ the polar angle with
respect to the z axis in momentum space, taken to lie along
the crystallographic a-axis direction. This choice of order
parameter is obviously a dramatic oversimplification com-
pared to the states that have been discussed previously in
the orthorhombic crystal, including nonunitary ones; never-
theless, the qualitative features at low T, H should depend
only on the existence of linear point nodes and their
location relative to the field and current directions.
Figures 3(a) and 3(b) show some representative electronic
thermal conductivity plots assuming scattering from impu-
rities only, for a range of impurity parameters; the plot is
based on the theory reviewed in Appendix A. First, note
that the observed κel=T ∼ T2 behavior is expected over an
intermediate-temperature range for a state with point nodes
located in a generic position relative to the heat current

flow, and impurity scattering in the intermediate-to-unitary
limit. At asymptotically low temperatures, the T depend-
ence is strongly influenced by self-consistency, despite the
lack of leading universal constant κel=T as in the line-node
case [15,30]. Instead, the behavior of κel=T as T → 0 is
very flat [31,32]. Furthermore, as shown in Fig. 3(b),
significant deviations from unitary or near-unitary scatter-
ing lead to poor agreement with the data due to low-T
upturns.

0

1

0

1

2

0

1

2

3

4

5

0 0.5 1
0

1

2

0 0.5 1
0

1

2

3

4

0

1(a) (b)

(c) (d)

(e) (f)

FIG. 3. Thermal conductivity for an axial state on a spherical
Fermi surface. The calculated thermal conductivity is presented
for a gap model with Δ ¼ Δ0 sin θ expðiϕÞ, where θ is the polar
angle and ϕ is the azimuthal angle, for heat currents directed
perpendicular (left columns) and parallel (right columns) to the
nodal positions, and for two different disorder levels (0.98Tc0 in
black, 0.85Tc0 in red). Panels (a) and (b) present electronic
thermal conductivity as functions of the temperature for weak
(tan θs ¼ 2, dashed lines) and for the strong (tan θs ¼ 10, solid
lines) pointlike impurity scatterers. Panels (c) and (d) include the
contribution from the inelastic scattering to the electronic thermal
conductivities in the presence of strong scatterers with
tan θs ¼ 10, and panels (e) and (f) add phonon contributions
(blue dashed lines) modeled assuming defect scattering as
described in the text. The total thermal conductivity (magenta
solid lines) thus is calculated to include impurity scattering with
tan θs ¼ 10 for Tc ¼ 0.98Tc0, inelastic scattering Γin ¼ 0.2Tc0 at
T ¼ Tc0, and phonon contributions.
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Figures 3(c) and 3(d) now illustrate the effect of inelastic
scattering on the electronic thermal conductivity. The strong
peak below Tc in κ=T is strongly reminiscent of cuprates,
where it is attributed, e.g., in YBCO [27], to the collapse of
the quasiparticle spin fluctuation relaxation rate in the
superconducting state as the gap opens below Tc. In the
current model, however, the collapse is somewhat weaker
due to the point nodes, and the contribution of the inelastic
scattering falls off even more rapidly than in the line-node
case as T → 0 (see Appendix B). In Figs. 3(e) and 3(f), we
show the effect of adding the phonon contribution to the
thermal conductivity. Phonons are modeled assuming defect
scattering as described in Refs. [27,29] and reviewed in
Appendix A. Within the current model, this leads to κ=T ¼
κel=T þ κph=T peaks at somewhat lower temperatures than
experiment, but agrees qualitativelywith the overall behavior
with temperature (Fig. 4).
The experimental data shown in Fig. 1 vary monoton-

ically at low T, and there is no linear-T term in κ from
impurity scattering, as expected for an axial state realized in
sufficiently clean samples [15,30]. We show in Fig. 4(a) a
comparison of the best fit of the theory for a combination
of impurity, inelastic electron-scattering and phonon-
scattering parameters with the experimental data. Since
the variation of physical properties with sample quality

is a pressing issue in UTe2, we also present results in
Figs. 4(a)–4(c) for concentrations corresponding to Tc
values of 2.1, 1.8, and 1.6 K in theory and experiment.
We see that the height of the inelastic peak at intermediate
temperatures grows with decreasing disorder, as in Fig. 1,
reflecting the growth of the inelastic quasiparticle mean
free path tomuch lower temperatures before being cut off by
the elastic mean free path. While many uncertainties exist
with this simplified model as discussed below, the best fit is
obtained assuming the nodes are away from the a axis, most
readily observed in the large calculated anisotropy for node-
parallel and -perpendicular heat currents in Fig. 4(a). In part,
this conclusion arises from the sensitivity of the jqkâ result
to impurity phase-shift deviations fromunitarity, as reflected
in the low-T bump not seen in experiment, but it is also
consistent with recent experiments suggesting the nodal
positions are located away from the a axis, in particular, the
recent ultrasound experiments that find less sensitivity to
strain along the b axis as evidence of a B2u order parameter
[33], as well as a small anisotropy in penetration depth
consistent with b- and c-axis nodal directions [6].
We now comparewith the expected field dependence for a

state with point nodes calculated within the Doppler-shift
approximationwhere quasiparticlemotion in thevortex state
is treated semiclassically, such that each quasiparticle has its
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FIG. 4. Qualitative fits to the experimental data. Panels (a)–(c) show the qualitative fit to the temperature dependence of κ=T
normalized to their respective normal-state values κN=T at Tc. The s-wave scattering phase shift is tan−1ð3Þ, and κ=T along the nodal
direction (blue) and perpendicular to the nodal direction (red) include contribution from phonons and inelastic scattering. Filled circles
show the experimental data for heat current applied along the a axis. Panels (d)–(f) show the fits (lines) to the field dependence of the
zero-temperature limit values of experimental data (circles) measured with heat current parallel to applied fields, normalized to the zero-
temperature limit values of κ=T measured at Hc2. Legends are equivalent for all panels, and each column represents the same values of
Tc and impurity parameters. Note that the impurity scattering rates are chosen to match the experimental Tc values.
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energy shifted δEk → vs · pF, where vs is the superfluid
velocity and pF is the Fermi momentum.. The Doppler-shift
contribution from extended quasiparticle states in this case
can be shown to be κ=TðH → 0Þ ∼H=Hc2, very different
from the exponentially activated dependence expected for a
fully gapped system, and somewhat different from the
H logH behavior expected for line nodes. The vortex lattice
itself is assumed to be pinned (with other assumptions and
parameters described in Appendix A). In Figs. 4(d)–4(f), we
show the calculated field-dependent κ normalized to itsΔ ¼
0 (normal state) T → 0 value, which in the current descrip-
tion corresponds to the electronic impurity scattering con-
tribution only. This is the same procedure employed in the
normalization of the experimental data in Figs. 2(d) and 2(f).
While the theory does not reproduce the apparent small peak
at low fields for the purest sample, it is roughly consistent in
magnitude and behavior with the overall field behavior for
H ≪ Hc2. Thus, while the best fit for sample S3 [Fig. 4(d)]
is consistent with the conclusion drawn from the T
dependence, that nodes are away from the principal
a-axis direction, the results for the dirtier samples S1 and
S2 in Figs. 4(e) and 4(f) appear to disagree. However, the
rough suppression of the overall field-dependence variation
with disorder is captured by the theory. We note that this
magnitude of the field variation includes a factor describing
the geometry of the vortex lattice and the coherence lengths;
this factor is not known quantitatively but should be of order
unity and is chosen to be the same for all three disorder
levels. Thus, from the field dependence alone it is difficult to
determine the positions of the nodes relative to the heat
current. On the other hand, it is clear that the field
dependence is most consistent with point nodes, and
inconsistent with a fully gapped state.

IV. CONCLUSIONS

In this work, we report the first systematic study of the
low-temperature thermal transport of UTe2 as a function of
the scattering rate and superconducting transition temper-
ature, utilizing crystals obtained by different growth meth-
ods including a unique synthesis route using tellurium flux
to obtain residual resistance ratios as high as 600. We have
measured the temperature and magnetic-field dependence
of the thermal conductivity of four samples with varying Tc
values and normal-state scattering rates, revealing a robust
pattern of behavior in the superconducting state of UTe2.
Our experimental data can be understoodwithin the standard
theory of a superconductor with point nodes in the presence
of varying levels of disorder, including inelastic electron
scattering that leads to a peak in the temperature dependence
below Tc for the cleaner samples. The zero-temperature and
low-field limiting behaviors of thermal transport are shown
to be only consistent with the presence of a superconducting
gap with point nodes, allowing us to rule out any full-gap
scenarios. Theoretical analysis of a simple model p-wave
state supports a picture with nodes located away from the

crystalline a axis, suggesting a B1u or B2u symmetry for the
low-field, ambient-pressure superconducting order param-
eter of UTe2 that is consistent with recent experiments. The
sample-independent rate of increase of thermal conductivity
observed in the zero-temperature, intermediate-field
mixed state is suggestive of a universal phenomenology
for ultraclean nodal superconductors that deserves further
attention.
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APPENDIX A: MATERIALS AND METHODS

Two different growth methods were employed to produce
crystals with reduced normal-state scattering rate. The first
was a chemical-vapor-transport method analogous to the one
used in Ref. [5] but at reduced temperatures. This was
motivated by previous work showing that lower growth
temperatures can increase Tc and reduce normal-state
scattering in UTe2 [8]. The sample measured here was
grown for one week in a temperature gradient of 950 to
860C°,with a uranium-to-tellurium ratio of 1∶1.85. Samples
from this growth batch consistently exhibited superconduct-
ing transitions at 1.8 K. The residual resistance ratios of the
crystals in this batch varied from 30 to 50.
Further increases in Tc were obtained through a novel

tellurium-flux-growth method. Previous attempts to grow
UTe2 in a tellurium flux have yielded only nonsuperconduct-
ing crystalswith very low residual resistivity ratios of about 2
or 3.The best available analyses of these samples suggest that
they are uranium deficient at the few percent level [9].
Motivated by these observations, we attempted Te-flux
growths with greater concentrations of uranium. For these
growths, uranium and tellurium chunks were combined in a
ratio of nearly 1∶2, placed inside an alumina crucible and
sealed in a quartz ampoulewith an argon atmosphere of about
100 mbar. The growths were heated rapidly to 1185C°, held
there for five hours, and then cooled to 1000C° at 4C°=hour.
Because the uranium-to-tellurium ratio was close to the
stoichiometry of the UTe2, relatively little excess tellurium
remained after the growth cycle. This allowed the ampoule to
be simply cooled to room temperature, and the residual flux
was removed from the crystals mechanically.
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In growths with approximately 30% uranium content, the
RRRs of the samples improved to about 7, as opposed to 2 or
3 as found in samples grown with an initial uranium
concentration of 22% or 25% [9]. At a 32% uranium con-
centration, the growths produced some superconducting
crystals. These crystals make up about a third of the overall
yield of the growths—with the remainder being nonsuper-
conducting UTe2 crystals—and they exhibit superconduct-
ing transition temperatures of about 2K and elevated residual
resistivity ratios of between 100 and 600. By contrast, the
nonsuperconducting crystals in these growths showRRRs of
about 3. These observations suggest chemical similarity to
crystals grown in an NaCl=KCl flux, which also exhibit
superconductivity at 2 K and arise characteristically as a
minority phase in those growths [9]. Further work will be
required to determine exactly why superconductivity
emerges suddenly in growths with a 32% uranium concen-
tration, but we can offer a few observations here. According
to published binary phase diagrams, a Te-U systemwith 32%
or more uranium will first form the phase U7Te12 as it cools
and then formUTe2 crystals. The fact that superconductivity
is not observed in any crystals grown at 30% or less strongly
suggests that the presence ofU7Te12 in themelt is at least part
of the explanation. However, no macroscopic U7Te12 crys-
tals could be found in the batch, and the phase did not appear
in powder x-ray patterns. On the other hand, magnetization
measurements sometimes revealed traces of U-Te binary
compounds on the tellurium-rich side of UTe2, including
U7Te12. This is yet another similarity that these crystals
possess to those grown in a NaCl/KCl flux [9]. These
observations suggests that U7Te12 may be forming as
expected but then transforming into UTe2 at lower temper-
atures, creating crystals in a uranium-rich environment that is
thought to be favorable to superconductivity in this material.
In any case, the existence of a second synthesis route to high
RRR samples of UTe2 should provide valuable opportunities
to study the microscopic factors responsible for the
differences in Tc in this system.
These Te-flux-grown superconducting crystals where

characterized by x-ray diffraction, which confirmed that
the crystal structure was that of UTe2, with resistivity
measurements, which showed superconductivity at 2 K and
substantially enhanced RRRs, and with heat capacity
measurements, which confirmed the bulk nature of the
superconducting transition (see Fig. 5).
Resistivity data were collected with a conventional

four-terminal, ac lock-in technique. Heat capacity was
measured by a quasiadiabatic technique where the calo-
rimeter and sample where heated by about 1% of the bath
temperature and allowed to relax. The heat capacity was
then extracted by fitting the rising and falling curves to an
exponential function. Thermal conductivity measurements
were performed by a one-heater, two-thermometer, dc
method. The typical thermal gradient was between 1%
and 2% of the bath temperature. Contacts to the samples

where made with a bismuth-tin-copper solder that main-
tained good thermal conductivity throughout the temper-
ature and field range studied. The overall error in the
measurement is dominated by the uncertainty of the geo-
metric factor. We estimate this uncertainty to be
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FIG. 5. Characterization of superconducting UTe2 samples
grown in tellurium flux. Panel (a) shows the a-axis resistivity
of four samples of Te-flux-grown UTe2. All four samples show a
superconducting transition around 2 K and RRRs above approx-
imately 100. The data are normalized to the average value of
ρð300 KÞ for consistency. Panel (b) shows the heat capacity for
sample S4 from the main text, along with that from another
Te-flux-grown sample taken from the same batch as sample S3.
The size of the jump at Tc is comparable to that of high-Tc
samples of UTe2 grown by other methods. The inset shows the
low-temperature region. Solid lines in the inset are fits of the data
to a γ0 þ T2 form between 350 mK and 1 K. These fits yield γ0
values for the samples of approximately 9 and 10 mJ=molK2,
comparable to other flux-grown samples in the literature.
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approximately 25% in samples S2 and S3 and closer to 50%
in S4. Statistical error arising from fluctuations in the
thermometry, etc., are reflected in the scatter of the data
points.
To study the T → 0 behavior of the thermal conductivity,

it is necessary to extrapolate our κðTÞ=T curves to 0 K. The
fits shown in Figs. 2(a)–2(c) were done by finding the best
fit to the data of a single power law κ=t ∼ Tn where both n
and the intercept were allowed to vary. For some curves, a
good fit to a single power law could be obtained only over a
limited temperature range. This was especially true for the
highest RRR sample at low fields. Because of this, the
fittings were generally done for data below 300 mK and
were restricted to even lower temperatures if no visually
acceptable fit could be found. Finally, although the zero-
temperature extrapolations are useful for modeling and
conveying the data, we would like to emphasize that all of
the trends in the data that support the conclusion of point
nodes are visually obvious in the raw data, and so the
conclusion that point nodes are present in the gap does not
depend on the details of these extrapolations. All raw data
are presented in Figs. 2(d)–2(f) with the exception of the
data on sample S3 for fields above 0.5 T. These are omitted
from the main text because the very large value of κ=T in
the normal state would have obscured the behavior at low
fields. The higher field data on this sample are presented in
Fig. 6 for completeness.

APPENDIX B: THEORETICAL DETAILS

1. Thermal conductivity for a superconductor
with point nodes

The simple model order parameter for a unitary super-
conductor with point nodes is given by an axial state. On a
spherical Fermi surface, the axial state is given by

Δθ ¼ Δ0 sin θeiϕ; ðB1Þ

where θ is the polar angle, ϕ is the azimuthal angle, and Δ0

is the superconducting gap maximum. This state has point
nodes along the ẑ direction at the north and south poles of
the Fermi surface. The diagonal thermal conductivity for
the axial state [32] is given by

κii
T

¼ ℏk2B

Z
∞

−∞
dω

ω2

T2

�
−
dnFðωÞ
dω

�

×

*
N0v2Fi

1

2Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

θ − ω̃2
q �

1þ jω̃j2 − jΔθj2
jΔ2

θ − ω̃2j
�+

FS

;

ðB2Þ

where N0 is the single-particle density of states per spin at
the Fermi level in the normal state, vFi is the Fermi velocity
along the ith direction, T is the temperature, and nFðωÞ is
the Fermi function. h…iFS denotes an average over the
Fermi surface. The effect of elastic impurity scattering is
embedded in ω̃, which is obtained by solving the following
self-consistent equation:

ω̃ ¼ ωþ i0þ þ nimp

πN0

g0
cot2 θs − g20

: ðB3Þ

Here, nimp is the impurity concentration, θs ≡
tan−1ðπN0V impÞ is the s-wave scattering phase shift, which
is related to the strength of the impurity potential, and g0 is

g0ðω̃Þ ¼
*

ω̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

θ − ω̃2
q

+
FS

: ðB4Þ

In the zero-temperature limit,

κii
T

����
T→0

¼ π2ℏk2B
3
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Here, ω̃0 is ω̃ðω ¼ 0Þ. In the case of point nodes,Δθ is zero
on a finite number of points on the Fermi surface; hence, in
the absence of any scattering (ω̃0 → 0), κ=T vanishes.
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FIG. 6. High-field a-axis thermal conductivity of sample S3.
Compared to the lower RRR samples, S3 shows dramatically
higher thermal conductivity in the normal state at low temper-
atures, consistent with its higher extrapolated electrical conduc-
tivity. Magnetic field is still aligned with the crystal a axis. Inset
shows the same data but enlarged to temperatures below 0.5 K.
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Unlike states with line nodes, for weak disorder an axial
state has no residual density of states or a limiting low-T
term in the thermal conductivity [24]. Such terms arise only
above a critical disorder level depending on the phase shift.
For the purpose of fitting the thermal conductivity data, we
have assumed that the highest-Tc sample corresponds to a
2% reduction in Tc, and the impurity concentration is
chosen to give this suppression with θs ¼ tan−1ð3Þ. For the
Tc ¼ 1.8 K and Tc ¼ 1.65 K samples, the impurity con-
centrations are chosen to give 15% and 25%Tc suppres-
sion, respectively. The Tc is determined by solving

ln
�
Tc

Tc0

�
¼ Ψ

�
1

2

�
− Ψ

�
1

2
þ ΓN

2πTc

�
: ðB6Þ

Here, Ψ denotes the digamma function, and the normal-
state scattering rate ΓN is ðnimp=πN0Þ=ðcot2 θs þ 1Þ.

a. Inelastic scattering

As discussed in the main text, the effect of inelastic
scattering and contribution from phonons needs to be
included in order to describe the experimental data. In
general, the treatment of simultaneous elastic and inelastic
scattering is a complex problem; however, here we simply
assume that the source of scattering is independent and
combine the individual contributions when evaluating
thermal conductivity. This can be done by adding the
inelastic scattering rate to ω̃ in Eq. (B2),

ω̃ → ω̃þ i
2τinel

¼ Re½ω̃� þ i
2τel

þ i
2τinel

: ðB7Þ

The imaginary part of ω̃ is the elastic scattering rate. We
further assume that the origin of the inelastic scattering is a
boson that could be phonons or spin fluctuations, and the
bosonic dispersion and the electron-boson coupling do not
have any significant momentum and spin dependence. The
low-energy bosonic density of states is

DðΩÞ ¼ Ω
Ω2 þ Ω2

0

; ðB8Þ

where Ω is the energy of the boson, and Ω0 is the
characteristic energy scale associated with the bosonic
mode, and it is assumed to be largest energy scale
compared to Δ0, T, or ℏ=2τel. Under these assumptions,
the inelastic scattering rate is

1

2τinel
¼ g2bf

2

Z
∞

−∞
dΩNðω − ΩÞDðΩÞ

×

�
coth

�
Ω
2T

�
þ coth

�
ω −Ω
2T

��
; ðB9Þ

where gbf is the effective electron-boson coupling constant,
and NðωÞ is the quasiparticle density of states. In the

zero-temperature limit, the inelastic scattering rate
reduces to

ℏ
2τinel

¼ g2bf

Z
ω

0

dΩNðω −ΩÞDðΩÞ: ðB10Þ

At low energies ω ≤ Δ0, the density of states can be
approximated as power law NðωÞ ∼ N0ðω=Δ0Þα, and the
bosonic density of states can be approximated as Ω=Ω2

0,
and the inelastic lifetime becomes

ℏ
2τinel

≈
N0g2bf

Ω2
0Δα

0ðα2 þ 3αþ 2Þω
αþ2: ðB11Þ

For line nodes, α ¼ 1 leads to ð1=2τinelÞ ∝ ω3 and for point
nodes α ¼ 2 that gives ð1=2τinelÞ ∝ ω4. The integrand in
Eq. (B2) is sharply peaked at ω ¼ 0, and observing the
weak ω dependence of inelastic scattering rate, we retain
only the temperature dependence on τ−1inel at ω ¼ 0. At
ω ¼ 0, the inelastic scattering rate becomes

ℏ
2τinel

¼ g2bf

Z
∞

0

dΩ
Nð−ΩÞDðΩÞ
sinhðΩ=TÞ : ðB12Þ

This integral is also peaked at Ω ¼ 0; therefore, it can be
approximated as

ℏ
2τinel

≈
g2bf
Ω2

0

Z
∞

0

dΩ
NðΩÞΩ

sinhðΩ=TÞ ; ðB13Þ

which yields T4 temperature dependence for point nodes
and T3 for line nodes. The prefactor g2bf=Ω2

0 can be fixed by
the value of the inelastic scattering rate at Tc and it is used
as a fitting parameter. We find that the inelastic scattering
rate ℏ=2τinel ¼ 0.2Tc0 at Tc0 gives a reasonable fit to the
experimental data. Apart from the inelastic scattering rate,
the electron-boson scattering also affects the effective mass.
However, the correction to the effective mass is weak,
noting that the effective mass is quite high in UTe2.

b. Phonon thermal conductivity

The general expression for the phonon thermal conduc-
tivity is [28,29]

κph ¼
k4BT

3

2π2ℏ3v4s

Z
∞

0

dx
x4ex

ðex − 1Þ2 lðx; TÞ; ðB14Þ

where vs is the sound velocity, x is ℏω=kBT, ω is the
phonon energy, and lðx; TÞ is the effective mean free path
given by

1

lðx; TÞ ¼
1

lB
þ 1

ld
þ 1

le−ph
þ 1

lU
; ðB15Þ
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where lB, ld, le−ph, and lU are the mean free path due to
the boundary, defect, electron-phonon, and umklapp scat-
tering processes, respectively.
In order to determine the relevant scattering mechanism

for phonons below T ≲ 2 K, we need to estimate the sound
velocity and Debye temperature. Within the Debye model
the low-temperature specific heat due to phonons is given
by CphðTÞ ¼ AphT3, where Aph is

Aph ¼
12π4

5
NatomskB

1

Θ3
D
: ðB16Þ

Here, Natoms is the number of atoms per mole, and ΘD is
the Debye temperature. Using the experimentally estimated
value Aph ¼ 2.84 mJK−4mole−1 [5] and Natoms ¼ 1.8×

1024=mole, we find ΘD ¼ 127 K. The sound velocity vs ≡
ωD

ffiffiffi
3

p
Vu:c:=6π2Np:u:c: is 1.3 km=s using the unit-cell vol-

ume Vu:c: ¼ 355 Å3 and number of atoms per unit cell
Np:u:c: ¼ 12 [34]. We are interested in phonon thermal
conductivity below Tc ≪ ΘD; therefore, umklapp scatter-
ing can be ignored. There is no evidence of strong electron-
phonon coupling [35], and in the superconducting state,
le−ph is expected to be very large due to the reduced
quasiparticle density of states [36]. Hence, the boundary
scattering lB and scattering by the point defects ld are the
two main mechanisms that determine the phonon mean free
path. The boundary scattering is determined by the sample
size and the amount of diffusive scattering by the bounda-
ries. On the other hand, the scattering by the point defects is
an energy-dependent process. The mean free path due to
point defects is given by [37]

1

ldðx; TÞ
¼

�
81π4

4Vu:c:
N4

p:u:c:

�1
3

�
T
ΘD

�
4

x4
X
i

Ndi

�
δMi

Mi

�
2

:

ðB17Þ

Here, Ndi is the number of the ith kind of defect, Mi is the
mass of the ith kind of ion, and δMi is the mass difference
of the kind of defect fromMi. For a vacancy δMi ¼ Mi and
for a different type of isotope δMi ¼ Mi −Misotope, where
Misotope is the isotope mass. We rewrite κph,

κph
T

¼ α0T2

Z
∞

0

dx
x4ex

ðex − 1Þ2
1

1þ α1T4x4
; ðB18Þ

where α0 and α1 are

α0 ¼
k4BlB

2π2ℏ3v4s
; ðB19Þ

α1 ¼
�
81π4

4Vu:c:
N4

p:u:c:

�1
3 lB

Θ4
D

X
i

Ndi

�
δMi

Mi

�
2

: ðB20Þ

Since it is not possible to determine the effective boundary
scattering length in the presence of realistic boundaries
causing diffusive scattering, or the number of defects, we
use α0 and α1 as independent two fitting parameters to
capture the effect of these two types of phonon mean free
paths. Table I shows the parameters α0 and α1 used to fit
the data.

c. Magnetic-field-dependent thermal conductivity

Within the semiclassical formalism [38–40], the effect of
the magnetic field can be described by shifting the
quasiparticle energy by a Doppler shift, which is

δω ¼ 1

2
m�vF · vs; ðB21Þ

where vs is the superfluid velocity, vF is the Fermi velocity,
and m� is the effective mass. The superfluid velocity is

vs ¼
ℏ

2m�r
Ψ̂; ðB22Þ

where r is the distance from the vortex core in the real
space, and Ψ is the winding angle. We rewrite the Doppler-
shift energy as

δω ¼ Δ0

1

ρ
B

ffiffiffiffiffi
πη

32

r ffiffiffiffiffiffiffiffi
H
Hc2

s
fðϕ; θ;ΨÞ; ðB23Þ

where ρ≡ r=RH is the distance from the vortex core in the
units of magnetic length scale RH ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0=ηH
p

, ϕ is the
azimuthal angle, and θ is the polar angle in the momentum
space. Here, Φ0 is the magnetic flux quanta, and η is a
dimensionless parameter of the order of unity. The value
of η depends on the vortex-lattice structure, and we use
η ¼ ffiffiffi

3
p

=4 which corresponds to a triangular vortex lattice,
another dimensionless parameter B ¼ ℏjvFj=πΔ0ξ0 is used
as a free parameter in our calculations, and we have set
B ¼ 3.5. The upper critical field Hc2 ≡Φ0=2πξ20. We have
assumed that the upper critical fields are isotropic along all
directions, and the Fermi surface is a sphere. The true
anisotropy of the system can in principle be accounted for
by assuming anisotropic coherence lengths, Fermi veloc-
ities, and including the effects of disorder on these
quantities, which we have not done, in part because we
were analyzing data for JQ;Hkâ only. In Eq. (B23),

TABLE I. Parameters used to calculate the phonon thermal
conductivity for each sample.

Tc (K) α0 (mW=K4=cm) α1 (K−4) κph=κeljT¼Tc

2.1 1.92 0.113 0.89
1.8 1.57 0.124 1.16
1.65 0.84 0.151 0.74
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function fðϕ; θ;ΨÞ contains the information about the
magnetic-field direction and Fermi surface topology. For
a magnetic field along the nodes ẑ axis and perpendicular to
the nodes x̂, f are

fðϕ; θ;ΨÞHkẑ ¼ sin θ sin ðϕ −ΨÞ; ðB24Þ

fðϕ; θ;ΨÞHkx̂ ¼ ½cosΨ sin θ sinϕþ sinΨ cos θ�: ðB25Þ

In order to calculate the effect of the magnetic field on
thermal conductivity, we first solve Eq. (B3) with Doppler-
shifted quasiparticle energy ω → ω − δω. This makes
impurity renormalized quasiparticle energy a function of
ρ, Ψ. Now, using ω̃ðρ;ΨÞ, we calculate κðρ;ΨÞ=T, and
finally, we average κ over the vortex-lattice unit cell. The
averaging over the vortex-lattice unit cell is defined as

κ ¼ 1

A

Z
1

0

dρρ
Z

2π

0

dΨκðρ;ΨÞ; ðB26Þ

where A is the vortex-lattice unit cell area.
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