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Symmetry-enforced Fermi degeneracy in topological semimetal RhSb3
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Predictions of a topological electronic structure in the skutterudite TPn3 family (T =transition metal, Pn
= pnictogen) are investigated via magnetoresistance, quantum oscillation, and angle-resolved photoemission
experiments on RhSb3, a semimetal with low carrier density. Electronic band structure calculations and sym-
metry analysis of RhSb3 indicate this material to be a zero-gap semimetal protected by symmetry with inverted
valence and conduction bands that touch at the � point close to the Fermi level. Transport experiments reveal
an unsaturated linear magnetoresistance that approaches a factor of 200 at 60 T magnetic fields and quantum
oscillations observable up to 150 K that are consistent with a large Fermi velocity (∼1.3 × 106 m/s), high
carrier mobility [∼14 m2/(V s)], and the existence of a small three-dimensional hole pocket. A very small,
sample-dependent effective mass falls to values as low as 0.018(2) of the bare electron mass and scales with the
Fermi wave vector. This, together with a nonzero Berry’s phase and the location of the Fermi level in the linear
region of the valence band, suggests RhSb3 as representative of a material family of topological semimetals with
symmetry-enforced Fermi degeneracy at the high-symmetry points.
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I. INTRODUCTION

Following the discovery of topological insulators [1,2],
new classes of topological materials such as Dirac semimetals
[3], Weyl semimetals [4,5], and nodal semimetals [6,7] have
developed considerable interest. In Dirac systems, linearly
dispersing valence and conduction bands touch at discrete
points of fourfold degeneracy in the Brillouin zone (BZ),
giving Dirac nodes protected against gap formation by crystal
symmetry. Cd3As2 and Na3Bi were the first theoretically pre-
dicted Dirac semimetal candidates [8,9], later confirmed by
experiments [10–13]. By breaking either inversion or time-
reversal symmetry, a Dirac semimetal can be tuned to a
Weyl state where the nondegenerate linear touchings of the
bulk bands come in pairs [4,5], confirmed by recent experi-
ments on materials such as the TaAs family (type I) [14,15].
Recent studies have shown the existence of other exotic topo-
logical semimetal types, such as type-II Weyl semimetals
such as WTe2 and MoTe2 [16,17], nodal-line or nodal-chain
semimetals [6,18,19], and triple fermions or beyond [20–24].
The topologically nontrivial band structure in such materials
hosts unusual electronic states and exotic physical proper-
ties, including the so-called chiral anomaly phenomena and
the associated negative magnetoresistance (MR), nonlocal
transport, and quantum anomalous Hall effect [25–32]. In-
terestingly, most Dirac and Weyl semimetals exhibit high
mobilities and extremely large values of MR [25,26,28,30–

33]: Carrier mobilities in Cd3As2, TaAs, and WTe2 approach
100 m2/(V s), and MR scales of up to ∼5000 are observed in
9 T fields. Extreme MR is believed to arise from the lifting of
the high mobility of the Dirac or Weyl node protected by the
(crystal or time-reversal) symmetry or large fluctuations in the
mobility due to the disorder effect of the Dirac quasiparticles
[25,26]. Large MR is also observed in some other semimetals
such as LaSb and the NbSb2 family [34–37] related to the
topological band properties [38–43].

Although extensive studies have been reported, topological
semimetal families are still rare. Seminal theoretical work by
Singh and Pickett [44] on the TPn3 (T = transition metal,
Pn = pnictogen) skutterudites that predated the topological
revolution identified the possibility of an unusual quasilinear
band dispersion structure in the cubic unfilled skutterudite
CoSb3 [45]. CoSb3 is a well-known thermoelectric small-
gap semiconductor [44,46], that, while topologically trivial,
was predicted to be tunable through a topological quantum
critical point via displacement of the Sb sublattices. Such
a displacement was proposed to decrease gap size toward
a critical point where the gap closes and massless (Dirac
or Weyl) bands appear [45,47]. With further displacement,
spin-orbit coupling would open a gap between inverted bands,
realizing a nontrivial topological state. Similar behavior was
also proposed in the theoretical compound IrBi3, where band
inversion between Ir-d and Bi-p orbitals was predicted to
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occur [48]. In this paper, we report on an exploration of
the intermediate member RhSb3 using several experimental
methods to identify a class of topological semimetals with
symmetry-enforced Fermi degeneracy at the high-symmetry
points, that is, enforced semimetals with Fermi degeneracy
(ESFDs) [23,24], in this skutterudite series. Together with ob-
servations of very large MR and high carrier mobility values,
quantum oscillation studies of the effective mass and nontriv-
ial Berry’s phase, as well as the angle-resolved photoemission
spectroscopy (ARPES) experiments, are consistent with first-
principles calculations of the electronic structure indicating
that a nontrivial topology is present in this family.

II. METHODS

Single crystals of RhSb3 were synthesized by a high-
temperature self-flux method. X-ray diffraction data were
taken at room temperature with Cu Kα (λ = 0.154 18 nm)
radiation in a powder diffractometer. Electrical transport mea-
surements up to 14 T were conducted on polished samples in a
commercial cryostat applying the conventional four-wire con-
tact method. High-field MR and Shubnikov–de Haas (SdH)
oscillation were measured at the National High Magnetic
Field Laboratory (NHMFL) Tallahassee DC Field Facility
up to 35 T, using a one-axis rotator in a He-3 cryostat with
temperature range ∼0.35–70 K, and also at the NHMFL Los
Alamos pulsed field facility up to 65 T. All measurements
were performed with electrical current flowing along the
[100] direction. The magnetic field direction was always kept
perpendicular to the current, but rotated from perpendicular
to the (100) face (θ = 0◦) to a direction along the (100)
face (θ = 90◦). The longitudinal conductivity σxx is derived
through tensor conversion from the longitudinal resistivity
ρxx and the Hall resistivity ρxy by σxx = ρxx

ρ2
xx+ρ2

xy
. The global

fitting and uncertainty analysis for the quantum oscillation
in the longitudinal conductivity σxx for RhSb3 single crystals
was performed using a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) optimizer and a Markov chain Monte Carlo (MCMC)
method to compute the joint distribution of parameter proba-
bilities and to find the global minimum, implemented in the
BUMPS code [49].

ARPES measurements were performed at beamline 7.0.2.1
of the Advanced Light Source (ALS) at Lawrence Berkeley
National Laboratory. The sample was cleaved and kept at 80 K
at a base pressure of 5 × 10−11 Torr. Photoemitted electrons
were detected with a Scienta R4000 analyzer, for photon en-
ergy ranging from 130 to 170 eV. The energy and the angular
resolution were better than 50 meV and 0.2◦, respectively.

First-principles electronic structure calculations were per-
formed within the full-potential linearized augmented plane-
wave (LAPW) method [50] implemented in the WIEN2K

package, without or with spin-orbit coupling (SOC) [51].
The generalized gradient approximation (GGA) of Perdew,
Burke, and Ernzerhof [52] (PBE) was used for the exchange-
correlation potential. The LAPW sphere radius was set to
2.5 bohrs for all atoms. The converged basis correspond-
ing to Rminkmax = 7 with additional local orbital was used,
where Rmin is the minimum LAPW sphere radius and kmax

is the plane-wave cutoff. Lattice parameters were obtained
from refinement of the x-ray diffraction pattern obtained from

powdered single crystals. In the calculation with spin-orbit
coupling, the modified Becke-Johnson (mBJ) exchange po-
tential was combined with the GGA correlation [53]. It can
effectively mimic the behavior of the orbital-dependent po-
tential around the band gap and so is expected to obtain the
accurate position of states near the band edge and the band
order, which are the keys to determine the band inversion and
the band topology. For high-symmetry points, the eigenvalues
(irreducible representations) of all symmetry operators have
been computed from the wave functions for each band using
the open-source code VASP2TRACE, referring to the character
tables in the Bilbao Crystallographic Server (BCS) [54,55].

III. RESULTS AND DISCUSSION

The T Sb3 system with T = Co, Rh, and Ir crystallizes in
the symmorphic unfilled skutterudite structure (space group
Im3̄) with cubic Bravais lattice as shown in Fig. S1 of the
Supplemental Material [56]. Without SOC, for the space
group Im3̄, the � point in the first Brillouin zone has a
point group symmetry of Th. In CoSb3, the highest valence
band mainly derived from the p orbitals of Sb is found to
form an irreducible representation �−

1 of the Th point group,
while the three lowest conduction bands dominated by the
d-eg orbitals of the (Co) transition metal atoms form an irre-
ducible representation �+

4 . The CoSb3 band structure is highly
symmetric, with a single set of occupied and unoccupied
bands touching at the high-symmetry � point. Turning on
SOC lifts the degeneracy of these states and induces a gap of
∼50–120 meV between the valence band with an irreducible
representation �−

5 and the conduction bands with irreducible
representations �+

5 and �+
6 + �+

7 , for the m3 double point
group [44,45,57,70], as shown in Fig. 1(a) [45].

In RhSb3, the stronger SOC in Rh atoms pushes the band
�−

5 up as shown in Fig. 1(b). The energy difference η =
E�+

6 +�+
7

− E�−
5

, which indicates the strength of the band in-
version as SOC is increased, is shown to become negative
[Fig. 1(c)]. This implies that band inversion occurs in RhSb3

at the � point. The SOC also lifts a degeneracy and opens an
∼20 meV gap between the single band �+

5 and the double-
degenerated bands �+

6 + �+
7 , in Fig. 1(c). Furthermore, the

overlap of the valence band �−
5 and the conduction bands �+

5
and �+

6 + �+
7 induces a strong hybridization between the p

orbitals of Sb atoms and the d orbitals of Rh atoms which
is evidenced by the calculated negative ξ = E�+

6 +�+
7

− E�+
5

in
Fig. 1(d). Correspondingly, in the highest valence band, the
part far away from the � point is mainly contributed from the
p orbitals of Sb atoms. However, the weight of Rh-4d orbitals
[indicated by the radii of circles in the band line of Figs. 2(a)
and 2(b)] increases when approaching the Fermi level and
becomes dominant. This clearly indicates a band inversion
between Rh-d and Sb-p orbitals. The highest valence band
and the lowest conduction band form the irreducible represen-
tations �+

6 + �+
7 , and the band �−

5 sits above all these bands.
However, there is no influence on the double-degenerated
bands �+

6 + �+
7 at � because the double degeneracy is en-

forced by the m3 double point group. Therefore the Fermi
energy of RhSb3 is pinned to the doublet �+

6 + �+
7 and is pro-

tected by symmorphic crystalline symmetry and time-reversal
symmetry [47]. As shown in the band structure in Fig. 2(b), a
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FIG. 1. Band inversion and symmetry-enforced Fermi degeneracy of unfilled skutterudite compound RhSb3. (a) Schematic of band
ordering in CoSb3 close to the Fermi level, showing the valence band with an irreducible representation �−

5 and the conduction bands with
irreducible representations �+

5 and �+
6 + �+

7 touching at the � point. (b) The stronger SOC in Rh atoms of RhSb3 pushes the band �−
5 up. The

energy difference η between �+
6 + �+

7 and �−
5 , indicating the strength of the band inversion, becomes negative. (c) The SOC in RhSb3 also

lifts the degeneracy between �+
5 and �+

6 + �+
7 . (d) Finally, the overlap of the valence band �−

5 and the conduction bands �+
5 and �+

6 + �+
7

induces a strong hybridization between the p orbitals of Sb atoms and the d orbitals of Rh atoms which is evidenced by the calculated negative
energy difference ξ between �+

6 + �+
7 and �+

5 , giving the final band order of RhSb3.

Dirac-like quasilinear dispersion persists over a wide energy
range, with a more parabolic dispersion appearing in a very
small energy window of ∼20 meV close to the Fermi level
as shown in Fig. 2(b). The resultant calculated Fermi surface
is an extremely small isotropic hole pocket centered at the �

point [Fig. 2(c)]. Together, the band inversion and degeneracy
near the Fermi level point to RhSb3 as a type of ESFD. The
ESFD is easily tuned to a topological insulator by symmetry
breaking such as a uniaxial strain in the z direction. In other
words, an infinitesimal symmetry breaking perturbation can
lead it to a topological insulating phase, which is confirmed

by the Fu-Kane Z2 invariants (ν0 = 1, ν1 = ν2 = ν3 = 0) in
the calculation with uniaxial strain (shown in Fig. S2 of the
Supplemental Material).

To evaluate and confirm the nontrivial topology of these
bands, we performed both ARPES and quantum oscilla-
tions experiments. Photon-energy-dependent ARPES mea-
surements confirm the presence of a linearly dispersive
three-dimensional hole pocket around �. The sample was
cleaved to expose the (001) surface. Assuming a 10 eV inner
potential, at 140 eV photon energy the momentum probed
along the c axis corresponds to kz ∼ 4.5 × 2π/c (π/c = � −

FIG. 2. Calculated electronic structure of RhSb3. (a) and (b) The electronic structure of RhSb3 was calculated from first principles using
two methods: Without spin-orbit coupling using PBE potential (a) and with spin-orbit coupling and modified Becke-Johnson potential (b) (see
text). The radii of circles denoting band lines are drawn proportional to the Rh-4d orbital weight. The inset in (b) is an enlarged part of the
band structure around the Fermi level. The green, red, blue, and pink dashed lines indicate the positions of the Fermi levels for samples D, E,
C, and A. (c) The calculated Fermi surface of RhSb3 is represented in the first Brillouin zone and is extended below and enlarged by a factor
of 50 for clarity.
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FIG. 3. Linear dispersion of RhSb3 band structure from photon-energy-dependent ARPES at T = 80 K. (a) Fermi surface at 140 eV, p
polarization (p-pol). The red square shows the first surface-projected Brillouin zone for the (100) surface, while the blue and green squares
are the second and third zones (see more details in the Supplemental Material). (b) ARPES band mapping along the kx , ky, and kz directions.
Left panel: band mapping along the ky = −0.68 Å−1 line in the third BZ [yellow dashed line in (a), 170 eV (kz ∼ 5 × 2π/c), p polarization].
White solid curves show the peak position of the momentum distribution curves from a double-Gaussian fit, while blue solid lines are the
result of a linear fit of the band dispersion. Central panel: band mapping along the kx = 0 Å−1 line in the second BZ [white dashed line in (a),
140 eV (kz ∼ 4.5 × 2π/c), p polarization]. Right panel: kz dependence, assuming 10 eV inner potential, of the hole pocket in the second BZ
at (kx, ky ) = (−0.57 Å−1, 0 Å−1) [orange circle in (a), s polarization (s-pol)].

H). As a consequence of the body-centered-cubic structure,
the � points from adjacent surface-projected BZs are charac-
terized by a π/c offset in kz. For this reason, holelike Fermi
surface pockets can be observed in Fig. 3(a) only around
the � points of the second BZ. Furthermore, due to matrix
element effects, when using linear horizontal polarization (p),
the second BZ hole pockets are detected only along the kx = 0
Å−1 line while, with linear vertical polarization (s), those
same pockets are observed exclusively along the ky = 0 Å−1

line (see Fig. S3 of the Supplemental Material).
The resultant ARPES band mapping along kx, ky, and kz di-

rections is presented in Fig. 3(b). As a consequence of matrix
element effects and to maximize the photoemission intensity
from the hole pocket, these three cuts have been acquired in
different regions of momentum space using different photon
energies and incident polarizations. The left and central panels
of Fig. 3(b) present the band mapping along the kx and ky

directions [yellow and white dashed lines in Fig. 3(a), respec-
tively]. By fitting the momentum distribution curves in the
left panel, we estimate a Fermi velocity of (0.6 ± 0.2) × 106

m/s (4 ± 1.2 eV Å). In order to verify the three-dimensional
nature of the detected pocket, photon-energy scans were per-
formed to probe the kz dependence. As shown in the right
panel of Fig. 3(b), the photoemission intensity at (kx, ky) =
(−0.57 Å−1, 0 Å−1) (slightly off the � point) changes as a
function of energy, qualitatively defining a nearly isotropic
three-dimensional-cone-like dispersion for the hole pocket.
This is in good agreement with band structure calculations
and, for comparison, is in contrast to observations of Cd2As3,
where the Fermi velocity is markedly anisotropic [12]. Fur-
thermore, the field angular dependence of the frequency of
quantum oscillations in RhSb3 crystal (shown in Fig. S4 of the

Supplemental Material) exhibits very little variation with field
angle orientation, confirming the case for a nearly spherical
bulk three-dimensional Fermi pocket.

Magnetotransport and Shubnikov–de Haas (SdH) quantum
oscillation experiments were performed on five representative
samples (samples A to E). Magnetic fields applied along
the principal axis in a transverse configuration significantly
enhance the resistivity of RhSb3 in all samples. The MR
[= (ρxx(B) − ρxx(0))/ρxx(0)] is linear in the high-field region,
as evidenced by the field derivative of MR at different tem-
peratures for sample D shown in Fig. 4(a) and in Fig. S8
of the Supplemental Material, and it does not show any
sign of saturation up to a 64 T pulsed field but exhibits
quantum oscillations above 10 T [also observed in the Hall
resistivity, Fig. 4(b)]; it continues to increase above the quan-
tum limit of ∼35 T. The MR ratio is close to the reported
value (∼103–106) observed in both the Dirac material Cd3As2

and the TaAs family of Weyl materials [25,26,28,30–33]. As
shown in Fig. 4(c), the MR has a strong temperature depen-
dence, driving a semimetallic character in zero field toward a
semiconductorlike behavior with a saturating resistivity at the
lowest temperatures. While the absolute MR amplitude varies
among different samples and is dependent on the residual re-
sistivity ratio of the crystals as shown in Fig. 5 for samples A,
B, C, and E, all crystals show a crossover from semimetallic
character to semiconductorlike behavior driven by magnetic
field (shown in Fig. S5 of the Supplemental Material).

Figure 4(b) presents the Hall resistivity ρxy of RhSb3 as
a function of field at different temperatures. In fields below
6 T, ρxy is linear and nearly temperature independent, while
showing large quantum oscillations at higher fields that de-
grade with increasing temperature. It deviates slightly from
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FIG. 4. Large magnetoresistance, high carrier mobility, and quantum oscillations of RhSb3 single crystals. (a) Magnetoresistance of RhSb3

sample D for field orientation transverse to current direction, showing very large nonsaturating enhancement up to 65 T pulsed field and
prominent Shubnikov–de Haas oscillations up to temperatures of 150 K. (b) Hall resistivity ρxy of sample D [same temperature values as in
(a)], with carrier mobility (red squares) and density (black circles) extracted from fitting of data shown in the inset. (c) Temperature dependence
of the resistivity of sample D at different magnetic fields. (d) Amplitudes of Shubnikov–de Haas oscillations of the Fermi pocket as a function
of temperature T , for four samples with varying carrier densities. The solid curves are fits to the Lifshitz-Kosevich formula for samples A, C,
D, and E, which exhibit effective mass ratios m∗/me of 0.102(8), 0.066(7), 0.018(2), and 0.033(4), respectively, corresponding to oscillation
frequencies of 71, 60, 33, and 43 T, respectively. The inset shows the linear relation of 1

m∗ vs k−1
F = √

π

F for these samples (spheres), revealing
the Dirac-like dispersion (solid line fit) for RhSb3.

the linear behavior at the higher magnetic field, possibly due
to a shift in the chemical potential with the magnetic field
as shown in Bi2Se3 [58]. The carrier density n of sample
D is calculated by linear fits of the low-field ρxy, yielding
a value n ∼ 1.1 × 1018 cm−3 at low temperature and only
∼10% variation upon increasing temperature as shown in the
inset of Fig. 4(b). This is consistent with the zero-gap band
structure depicted in Fig. 2. From the carrier density n and the
zero-field resistivity ρxx = 18 µ� cm, the classical mobility
μc = 1/ρxxne is calculated to approach 14 m2/(V s) at 1.8 K,
nearly those of graphene, Cd3As2, and TaAs/TaP, which fall
in the range 1–100 m2/(V s).

In addition to MR variations, SdH oscillation measure-
ments performed on these different samples indicate a
tunability of the oscillation frequency, and hence the carrier
density and corresponding chemical potential variation, as
shown in Fig. 6 for samples A, C, D, and E. Quantum os-
cillations in conductivity are given by


σxx(T, B) = A(T, B) cos{2π [(F/B) + φ]}, (1)

with the nonoscillating amplitude A(T, B) =
e−2π2kBTD/h̄ωc 2π2kBT/h̄ωc

sinh(2π2kBT/h̄ωc ) , Dingle temperature TD, cyclotron

frequency ωc = eB/m∗ with effective mass m∗, phase factor
φ = −1/2 + β + δ, and SdH frequency F of the oscillation
corresponding to the cross section of the Fermi surface
defined by the cyclotron orbits [59]. For a trivial parabolic
dispersion, β = 0 and therefore the Berry’s phase is zero,
while β = 1/2 for a Dirac dispersion giving a Berry’s phase
of π . δ is a phase shift resulting from the curvature of
the Fermi surface in the third direction, taking a value of
δ = 0 (± 1

8 ) for a two-dimensional (three-dimensional) Fermi
surface [60–63]. The frequency F is given by the Onsager

relation F = h̄πk2
F

2πe with kF being the Fermi wave vector in the
spherical Fermi surface approximation.

As evident in Figs. 4(a) and 4(b), the SdH oscillations
of sample D have a very small frequency, which is 33 T
as extracted from fast Fourier transform (FFT) analysis of
the background-subtracted resistivity [Fig. 6(c)]. This value
corresponds to wave vector kF = 0.04(5) Å−1 and a very
small carrier density nSdH = 0.8(1) × 1018 cm−3, which is
consistent with Hall resistivity results. The other three crystals
also exhibit SdH oscillations (Figs. 5 and 6) with varying
amplitudes and frequency. FFT analysis results in Fig. 6 yield
a relatively large variation in frequencies: 71, 60, and 43 T for
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FIG. 5. Field dependence of the transverse magnetoresistance at different temperatures for four different RhSb3 single crystals: sample A
(a), sample B (b), sample C (c), and sample E (d). The inset in (b) shows the magnetoresistance of sample B in fields up to 35 T and 1 K.
Samples A, C, and E show clear quantum oscillation beginning at ∼10 T.

samples A, C, and E, respectively. Interestingly, the amplitude
of oscillations appears to be suppressed at different tempera-
tures for each sample. While oscillations are still evident at
150 K for sample D (Fig. 4), they disappear near 30, 50, and
100 K for samples A, C, and E, respectively. This suggests
that samples with smaller frequency (or carrier density) have
charge carriers with systematically smaller effective masses.
The decaying of the amplitude of SdH oscillation with tem-
perature is described by the Lifshitz-Kosevich (LK) formula
A(T, B), which is the nonoscillating amplitude component
of Eq. (1). As shown in Fig. 4(d), tracking the FFT ampli-
tudes of all four samples as a function of temperature indeed
shows a systematic trend. Fitting to the LK formula gives
effective mass ratios m∗/me of 0.102(8), 0.066(7), 0.033(4),
and 0.018(2) for samples A, C, E, and D, respectively, in
descending mass order.

The effective mass in RhSb3 is extremely light, being ri-
valed only by InSb, which has an effective mass ∼0.014me

that yields observable oscillations up to 175 K [64,65]. The
effective mass in RhSb3 is also in fact comparable to those ob-
served in typical Dirac (0.023me in Cd3As2 [25,26]) and Weyl
(0.033me in NbAs [32], 0.076me in NbP [28], and 0.15me

in TaAs [66]) semimetals. However, in RhSb3 the systematic
variation of m∗ with F is indicative of a departure from the
expectations for a parabolic dispersion. The effective mass,
defined as m∗ = h̄kF /vF , should be constant for a parabolic
band with different carrier densities since the Fermi velocity

vF = 1
h̄

∂ε
∂k |kF ∝ kF with ε being the band energy. However,

this is not true for Dirac fermions with a linear dispersion,
where vF is a constant. For instance, in graphene it is ex-
pected that m∗ is proportional to the square root of carrier
density since kF = (πns)1/2, which was indeed confirmed by
several experiments [67,68]. A similar phenomenon has also
been shown in Cd3As2 [26]. In RhSb3, the relation between
m∗ and kF follows the equation above very well, as shown
for all four samples in Fig. 4(d), except for an intercept
which is possibly due to the breakdown of the semiclassi-
cal transport theory close to the quantum limit. This gives
a constant vF = 1.3 × 106 m/s that is close to the ARPES
value and also to that of Cd3As2 (∼4 × 106 m/s) and NdP
(∼4.8 × 105 m/s).

The observation of a constant Fermi velocity with varying
carrier concentration in RhSb3 directly confirms that the bulk
carriers have a linear dispersion very close to the degeneracy
point, and the extreme values of m∗ and vF are considered
to be responsible for the high mobility values. The topolog-
ical nature of this band structure can be further explored by
analysis of the phase factor of the quantum oscillations as
indicated in Eq. (1). Experimentally, this phase shift in the
semiclassical regime can be obtained from an analysis of the
relation between the Landau level (LL) index N and energy,
widely represented in a so-called fan diagram of integer N
plotted as a function of inverse field 1/B. The slope of such
a plot is dependent on the oscillation frequency F , and the
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FIG. 6. The FFT spectra of Shubnikov–de Haas oscillations measured at different temperatures for sample A (a), sample C (b), sample D
(c), and sample E (d).

y-axis intercept yields the Berry’s phase β, in units of 2π . For
a topologically trivial material with parabolic dispersion, an
intercept of zero is expected, while that with a chiral Dirac
dispersion would possess finite Berry curvature and therefore
a Berry’s phase of value π .

Figure 7(a) presents the oscillatory component of the con-
ductivity 
σxx of samples C, D, and E as a function of 1/B.
Assigning the minima and maxima of 
σxx to integer (N) and
half-integer (N + 1/2) indices (for the oscillation in the high-
field part, the position of minima is defined as an average of
two subminima due to the spin splitting), respectively, yields
the LL fan diagram as shown in Fig. 7(b), demonstrating
the variation in slopes that correspond to the different carrier
densities of each sample. A linear extrapolation of N versus
1/B to the infinite-field limit for each sample yields finite
intercepts of 0.352(4), 0.381(2), and 0.373(6) for samples C,
D, and E, respectively. To properly extract the Berry’s phase
values, one must consider the phase shift due to geometry.
Taking the δ = − 1

8 phase shift due to the spherical geometry
of the Fermi surface (the hole pocket) of RhSb3 into account,
the measured intercept values are very close to the adjusted
value 3/8 corresponding to the geometry-adjusted phase shift
of 1/2 + δ, yielding a phase factor β = γ + 1

8 for a Berry’s
phase of 0.92(1)π , 1.02(1)π , and 0.98(1)π for samples C, D,
and E, respectively. Because the linear extrapolation of the
LL indices is a simplistic fit of the LL spectrum, we have
implemented a global fitting routine to further confirm the
nontrivial Berry’s phase in this paper. The Zeeman factor Rs =

cos( πgm∗
2m0

) needs to be incorporated to capture the observable
splitting. Using Eq. (1), the Zeeman factor can be merged into
cos{2π [(F/B) + φ]}, obtaining


σxx(T, B) = A(T, B) cos

(
πgm∗

2m0

)
cos

[
2π

(
F

B
+ φ

)]

= A(T, B)

{
cos

[
2π

(
F

B
+ φ + δφ

)]

+ cos

[
2π

(
F

B
+ φ − δφ

)]}
, (2)

where δφ = gm∗
4m0

. We fit 
σxx of samples C, D, and E using
the BUMPS code (see Methods section) [49] with Eq. (2) to
yield well-converging fits (shown in Figs. S7 and S8 of the
Supplemental Material) to the experimental data as shown
in Fig. 7(a). The Berry’s phases extracted from this global
fitting procedure are 0.87(1)π , 0.96(1)π , and 0.81(1)π for
samples C, D, and E, respectively, consistent with the LL
index extrapolations and therefore unequivocally implying the
presence of a nontrivial topology and the existence of Dirac
quasiparticles in the bulk of RhSb3. First-principles calcula-
tions suggest a parabolic dispersion around the degeneracy
point and linear dispersion in the valence band away from the
degeneracy point. While the energy resolution is not enough
in both experiment (ARPES) and theoretical calculation to
resolve the exact nature of the dispersion at the degeneracy
point (i.e., linear or quadratic), the lack of any observable

074205-7



K. WANG et al. PHYSICAL REVIEW MATERIALS 7, 074205 (2023)

FIG. 7. Berry phase analysis of Shubnikov–de Haas oscillations
in RhSb3. (a) Quantum oscillations of background-subtracted con-
ductivity 
σxx as a function of inverse fields up to 64 T for samples
D and E. The discrete symbols are the experimental data, while the
curves are fits using a global fitting routine as described in the text.
(b) Landau level (LL) index plot of oscillations of three samples, with
integer levels assigned to the minima of 
σxx and maxima assigned
as half-integer indices. Solid lines are linear fits to the data, extrap-
olating to infinite-field intercepts that correspond to finite Berry’s
phase values of 0.92(1)π , 1.02(1)π , and 0.98(1)π for samples C,
D, and E, respectively (see text).

curvature in the fan diagram, the observation of a constant
Fermi velocity with varying carrier concentration, and the
ARPES results suggest that the dispersion of the valence band
in a range close to the chemical potentials of our crystals is
very linear and Dirac-like [69], prompting further theoretical
consideration of the exact nature of topology in this class of
zero-gap topological semimetals.

IV. CONCLUSION

In summary, the electronic structure and transport prop-
erties of single crystals of the unfilled skutterudite material
RhSb3 were systematically studied by first-principles calcu-
lation, ARPES, and quantum oscillations measurements in
magnetic fields up to 64 T. The electronic structure calculation
indicates this material to be a zero-gap semimetal protected
by symmetry with band inversion between Rh-4d and Sb-p
orbitals. RhSb3 single crystals exhibit unsaturated MR up to
(1.6 × 104)% in 35 T field at 0.4 K. Quantum oscillations are
consistent with the presence of very small three-dimensional
hole pockets with a nontrivial Berry phase shift, suggesting
a nontrivial topological aspect to this system. The extremely
light effective mass of carriers increases from 0.015(7)me to
0.102(8)me as a function of the carrier density or Fermi vector
in different crystals. This and the ARPES results reveal that
the Fermi level locates in the linear region of the valence band.
Both the quantum oscillations and conventional Hall resistiv-
ity measurements reveal a very large mobility [∼14 m2/(V s)]
which decreases with increasing temperature, while the car-
rier density shows very slight change. Our results postulate
RhSb3 as a zero-gap topological semimetal whose electronic
structure and topological properties deserve further attention.

The open-source code VASP2TRACE and end-user button
CHECKTOPOLOGICALMAT are available [70].
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